Recherche par propriété

Cette page fournit une simple interface de navigation pour trouver des entités décrites par une propriété et une valeur nommée. D’autres interfaces de recherche disponibles comprennent la page recherche de propriété, et le constructeur de requêtes ask.

Recherche par propriété

Une liste de toutes les pages qui ont la propriété « Step Content » avec la valeur « It consists of removing the foam inside the life jackets using scissors or an utility knife. ». Puisqu’il n’y a que quelques résultats, les valeurs proches sont également affichées.

Affichage de 79 résultats à partir du n°1.

Voir (200 précédentes | 200 suivantes) (20 | 50 | 100 | 250 | 500).


    

Liste de résultats

    • Insulated mattress  + (It consists of removing the foam inside the life jackets using scissors or an utility knife.)
    • Rainwater harvesting  + (The pipe leading rain waters to the tank (The pipe leading rain waters to the tank (1) comes horizontally and splits in a T : * At first, the water preferentially goes into the 50 centimeters long vertical tube, connected to a 50 liter container (2) (You should adapt the volume based on the roof's surface area). This tube is drilled with holes, allowing the water to fall into the container (2). Inside this tube, there is a floating ball that rises while the water level in the container (2) increase. The ball rises until it is over the holes. The vertical tube is then blocked allowing the water to flow through the horizontal part of the T-shaped pipe. * This horizontal tube will drive the following clean water directly into the tank (1) of drinking water. The first 50 liters that washed the roof, collected in the container (2) can be used to water the garden.ainer (2) can be used to water the garden.)
    • Solar Generator Trailer- Electrical System  + ('''The cheapest and cleanest energy is tha'''The cheapest and cleanest energy is that which we do not produce/consume !''' In line with this principle, this approach[https://negawatt.org/sobriete-efficacite négaWatt] proposes to rethink our vision of energy by applying a three step approach: [https://negawatt.org/sobriete-efficacite Sobriety, Efficiency, then renewable energy]. Before sizing a photovoltaic electrical installation, it is necessary to consider several questions: *What are my needs? *Which are essential and incompressible? *Is electricity the most efficient way to meet all these needs? Detail on these questions applied to the case of our Festival is available in the "Files" tab located above. To materialize the electricity consumption of everyday equipment and possibly be able to eventually prioritize, the open-source game [http://la-revolt.org/ REVOLT] translates these consumptions in pedaling time.lates these consumptions in pedaling time.)
    • Water - Biosand Filter  + (This manual is free and open-source. It can be downloaded at the following address: https://static1.squarespace.com/static/5afb5f6225bf020305339c10/t/5bf67b714fa51a471a435d36/1542880476379/ohorizons_LeMouleEnBois_Manuel_Francais.pdf)
    • Spirulina-growing pond  + (For ergonomics, it is necessary to adjust For ergonomics, it is necessary to adjust the height of the basin to the worker's size. The basin is 30 centimeters high. In our case the bottom of the basin is one meter above the ground. When calculating the height of the legs, the thickness of the low and high frames must also be taken into account. * Make 4 legs with half-rafters, * Place the corner legs aligned with the corners of the bottom frame, * Install four central legs, of a single half-rafter, facing each stiffener of the low frame, * Place a bracket about 30 cm between each center leg and its bottom frame stiffener, four in total.its bottom frame stiffener, four in total.)
    • Spirulina farming  + ( * Screw a white plastic cap at the end of a ruler or a plastic or wooden rod of about 20 centimeters, * Scale the stem from 0 to about ten centimeters, with the 0 at the level of the cap. )
    • Farming of edible crickets  + ( *Place the egg cartons in the box, leavin *Place the egg cartons in the box, leaving a space between each carton. *Make a drinking trough, such as a chicken trough, with a glass of plastic water in a cup lined with a wire mesh to leave a space between the cup and the glass ( there must not be too much water at the risk of drowning the crickets). *Place a tray on the egg cartons large enough to hold the trough and feed for the crickets. hold the trough and feed for the crickets. )
    • Lacto-Fermented Preserves  + (<div class="mw-translate-fuzzy"> * Peel and wash the vegetables carefully * Depending on preference, grate or cut them into dice or strips. * Leave those vegetables which are usually left whole as they are, following washing (e.g green beans). </div>)
    • Domestic biodigestor  + (The entry of the system will be the biodigThe entry of the system will be the biodigestor mouth. The installation will first be done to verify dimensions of the system, and then will be dissasembled and definitively glued. * Put a PVC pipe in one of the digestor openings, without putting it too much inside (this would reduce matter circulation). * Create a 90° angle using two 45° bends. On small diameter tubes, it is better to have smooth angles, as a direct 90° angle would get stuck more easily. * Build the "mouth" with large diameter pipes. The larger the mouth is, the easier it will be to feed the digestor. A first fermentation process happens in the mouth. An unscrewable lid closes the mouth. * Link the mouth to the digestor, placing it higher than the digestor, so that matter can circulate in the system with gravity. can circulate in the system with gravity.)
    • Stand-Alone Adjustable Sink  + ('''Materials''' *Clear tubing 16/12mm (12'''Materials''' *Clear tubing 16/12mm (120cm + 20cm) *Clear tubing 12/10mm (40cm) *Plastic reducing adapter 12/10mm *Foot pump *Swivel spout tap
      ...To avoid dealing with multiple suppliers, we got the majority of the specialized materials concerning the sink on the site www.mon-camping-car.com We didn't find exactly everything we needed there. The foot pump is 12mm and the tap is 10mm, so we had to use two types of clear tubing and an adapter to get the right dimensions for the tap
      '''Directions''' #Connect the clean water bucket to the foot pump. Attach the 16/12 (1.2 meters) tube to the nozzle of the clean water bucket. Then, connect the 16/12 tube to the foot pump (The nozzle on the right when viewed from the bottom (water intake)). #Connect the foot pump to the swivel spout tap. Link the 16/12 (20cm) tube from the foot pump to the adapter and then to the 10/12 (40cm) clear tube which goes toward the swivel spout tap.
      he adapter and then to the 10/12 (40cm) clear tube which goes toward the swivel spout tap.)
    • Micro gasifier stove  + (1 - On the bottom of the box (2), mark the1 - On the bottom of the box (2), mark the location of about fifteen holes distributed over the entire surface. In the upper part of the box (2), mark the location of about ten holes, evenly distributed around the can. 2 - Then drill at the marked locations with a 7 mm drill bit (or with the hammer and nail).m drill bit (or with the hammer and nail).)
    • Thermosyphon Solar Water Heater  + (Our system has no pumping system. The wateOur system has no pumping system. The water circulation is only done thanks to a thermodynamic phenomenon called '''[https://en.wikipedia.org/wiki/Thermosiphon thermosiphon]'''. The principle of the thermosiphon system is that cold water has a higher density than hot water because it is more compact. It is therefore heavier and sinking. However, all systems tend towards a state of thermodynamic equilibrium. There is a movement called [https://en.wikipedia.org/wiki/Convective_heat_transfer thermal convection] to mix hot and cold water. For this reason, the solar collector is always mounted underneath the water storage tank, so that the cold water from the tank reaches the collector via a downhill water pipe. When the water in the collector heats up, the hot water rises naturally, pushed up by the cold water and returns to the tank. The cycle tank -> water pipe -> collector heats the water until it reaches an equilibrium temperature. The consumer can then use the hot water from the top of the tank.
      e the hot water from the top of the tank. <br/>)
    • Bio-Coal  + (Provide us with you remarks, ideas, experiences [http://lowtechlab.wikifab.org/index.php/Discussion:Bio_Charbon '''here'''] to help us improve this lowtech!)
    • Buried Aymarian Greenhouse  + (The Wallipini greenhouse is half-buried inThe Wallipini greenhouse is half-buried in the ground and is built like a house with: * walls made of Adobe (mix of clay and straw), * a framework made of wood * a roof made using a plastic tarpaulin (agroplastico). The Adobe walls store the heat during the day and deliver it inside the greenhouse at night. The inertia of the walls maintains an almost constant temperature inside the greenhouse. As La Paz is close to the equator, the sun is usually at zenith, the greenhouse's orientation does not really matter and the walls do not interfere with sun radiations. In the Wallipini, the vegetables can be cultivated 7 months per year (the Wallipini is not efficient enough against cold winters).ot efficient enough against cold winters).)
    • Black Soldier Fly breeding  + (The breeding environment can be made with The breeding environment can be made with various materials. For the prototype of the boat for example, we built a wooden box in which we put a plastic bin containing the waste and larvae (See photo). For example, you can use a plastic drum cut on top, or a simple plastic box. '''For the construction:''' '''1. Preparation of the boards''' *Using an electric or hand saw, cut the 6 boards to the right lengths *Sand the boards *Apply an undercoat on all sides of the boards and allow to dry *Apply a coat of wood paint and let it dry *Apply a coat of varnish (optional) and let it dry '''2. Assembly of the box''' *Using the angles and screws, assemble the boards on the bottom of the box *Using angles and screws, connect the different sides of the box *Cut out cleats to strengthen the inside of the box and attach the lid to it. *Using screws, fix the cleats on the upper part of the walls *Prepare the cover by installing hinges. *Install the cover on the box and fix the hinges '''3. Preparation of the waste box''' If the sides of your waste bin are not very high, it may be useful to put an additional barrier against larvae escape *Pass an old used inner tube all around your tray and leave a part coming out towards the inside *Staple the inner tube to the tray *Place the tray at the bottom of the box and stick it against one side '''4. Preparation of the slope''' *Cut the board in the shape of a trapezoid so that it forms a ramp when placed on the waste and joins the edge of the box at an angle of less than 45 degrees *Cut cleats to fit the external shapes of the ramp *Secure them with screws on the ramp '''5. Installation of the ramp ''' To facilitate maintenance, we put the ramp on a hinge to be able to lift it up and easily remove the bin from the waste *Install a hinge on the lower part of the ramp *Attach the hinge to the box '''6. Cutting of the holes on the box''' In order to allow the entry of flies and the exit of larvae, holes must be drilled on the sides of the box. For larvaes: *Measure the location where the ramp arrives and count 2cm high for the opening *Using a drill, make holes at the 4 ends of your opening *Using a saw, connect these holes to create an opening For the flies *On the sides of the box, drill with a hole saw about ten openings of 5cm in diameter '''7. Placing of the larvae collection box''' *Using screws, fix the plastic box under the larvae exit slot
      Make sure that the ramp is firmly fixed against the wall so that the larvae cannot fall back into the tank. If necessary, staple a bracket from the ramp to the collection box
      '''8. Laying supports (if no separate aviary)''' *Cut out pieces of cardboard boxes that are 10cm by 5cm thick. *Assemble 4 pieces with string *Attach two screws to the cleats at both ends of the box *Hang a string on these screws *Hang the egg-laying supports on the string so that they are as close as possible to the waste '''The general recommendations for the design of the living environment are :''' - Size your waste bin according to your weekly volume. Indeed, it is not necessary to have a too thick layer of substrate so it is better to be able to spread out your waste rather than stack it. - Drill holes so that female flies can come and lay eggs inside. - Place the egg-laying supports above the waste, as close as possible. These can be made of honeycomb cardboard or wooden planks separated by a pin (a gap must be left in which the flies will lay their eggs). During hatching, the larvae will fall directly into the waste. - Have a well sealed waste box to prevent larvae from escaping in case of lack of food. - Put a ramp for the exit of the larvae. It can be inclined up to 45 degrees but prefer a softer slope. As larvae tend to follow the edges of the box to find the exit, it may be good if the ramp is the full width of the box. - Avoid the ventilation holes on top to protect the substrate as much as possible from rain.
      Do not bring water into contact with eggs, they would burst!
      On the pictures, you can see the plans of the system we had validated and that works on the boat. The fly inlet/outlet holes on the top have been plugged and the aviary attached to the cover has been changed to a separate aviary, see below.
      works on the boat. The fly inlet/outlet holes on the top have been plugged and the aviary attached to the cover has been changed to a separate aviary, see below.)
    • Improved Stove - Patsari Model  + (The dimensions may be adapted.)
    • Semi-removable Mass Stove  + (There are a number of items that are needeThere are a number of items that are needed to build this stove, which can either be bought from new or salvaged. * The drums are easy to obtain, apart from the 120 litre ones, which are rare... and it can cost 50€ (excluding taxes) to buy one of this size from new. * The stove pipes, which form the fire pit, are very easy to salvage and will be considerably more expensive if bought from new. NB 1: the 2 pipes that are used for the (fixed) ash tray and the (removable) feed pipe must have a male fitting at one of their ends to accommodate the stopper. NB 2: A rigorous approach must be adopted when producing the exhaust system, using pipes which are compatible with one another. It is important to avoid leaks (condensates as well as smoke) and also the risk of fire . * Concrete can be made up of sand and fire cement but this will not be as durable as using chamotte concrete/fire cement. Chamotte consists of ground-up fire brick and must contain 25 to 40% alumina. To contact manufacturers of fire bricks, see list in the annex.Grain size of 0 to 10 mm grade is ideal, but 0 to 5 mm can also be used. AVOID making concrete with ordinary cement or ‘black’ cement (unlike fire cement, it does not contain alumina) * Vermiculite: mixed with cement acts to insulate the bottom of the container. You can find this in builder's merchants and garden centres mostly under the names of “Vermex” or “Effiperl” (NB the latter also contains perlite and is a French brand) * Ceramic glass: this is specialist glass which does not expand when exposed to heat and is resistant to thermal shocks of up to 800°C ! You can buy it in the shops (for about €400 to €600 per m²) but you can also salvage it from old inserts, electric hobs, oven doors (inner glass only, otherwise it is likely to have little resistance to heat). Do not use ordinary glass ! To test salvaged glass, stand on a flat surface and put the glass onto a gas camping stove. If it resists the heat, then that is a good sign. The final thing to do for the ‘crash test’ is pour a glass of cold water over it. If there is no reaction, then it is specialist glass. Do not put it on the grass in case it breaks. In this image, you will find the average supply costs for the different models. Taking the drum and the smoke exhaust out of the equation, the pipework will be a major part of the budget.pework will be a major part of the budget.)
    • Norwegian pot super-efficient fabric  + (This type of Norwegian pot can be adapted This type of Norwegian pot can be adapted to all shapes and sizes of stewpot, so we're talking about maximum capacity rather than size. ''To increase the capacity a little or to take into account a large handle (pressure cooker type), I advise you to play with the size of the lid rather than the rest.''
      Size Maximum capacity 1- Pillow radius 2- Radius cutting 3- Radius interior 4- Centre radius Quantity of wool washed
      '''1''' 3 Litres 17 cm 43 cm 35 cm 12 cm 0.9 to 1.2 kg
      '''2''' 8 litres 21 cm 55 cm 45 cm 16 cm 1.9 to 2.3 kg
      '''3''' 12 Litres 28 cm 55 cm 45 cm 16 cm 2.2 to 2.5 kg
      t;/td><td>8 litres </td><td>21 cm </td><td>55 cm </td><td>45 cm </td><td>16 cm </td><td>1.9 to 2.3 kg </td></tr><tr> <td>'''3''' </td><td>12 Litres </td><td>28 cm </td><td>55 cm </td><td>45 cm </td><td>16 cm </td><td>2.2 to 2.5 kg </td></tr></table>)
    • Tawashi  + (Use your pencil and ruler to draw a square 12cmx12cm. Put 20 nails every 2 cm. With your hammer, firmly plant the nails into the board onto each of the 20 dots.)
    • Phyto-Purification of Wastewater  + ( * Install a manhole at the top of the fil * Install a manhole at the top of the filter as an inlet for the polluted wastewater. * Inside the manhole, install a 3-way valve to distribute the water between the two beds. * Install a manhole at the bottom of the filter that collects the drained water. the filter that collects the drained water. )
    • 200W Wind Turbine  + ( * Choose a plank of dimension minimum 95m * Choose a plank of dimension minimum 95mm x 35mm '''Notes''': 1) The wood should be imputrescible, light-weighted and easy to work with. For example, red cedar, Oregon pine, spruce, larch, douglas fir may be suitable. 2) For this tutorial, the section of the red cedar plank is 150mm x 45mm. 3) The parameter which determines the energy transmitted by the wind at the propeller is the length of the blade and not it’s breadth. *With the help of the blade pattern, '''lower side visible''', mark the location for the first blade. '''Notes''': 1) Put the knots and defects of the wood at the end of the blade, so that the thinnest part does not become fragile (middle-end of the blade). 2) Select the leading edge ridge as neatly as possible. This ridge will not be altered during the cutting of the blade. 3) Extend the blade tip pattern by 4-5 cm to maintain a margin in case of damage. * Do the same for the 2 other blades and cut the blades. '''Note''': When using a circular saw for cutting, be careful to place the width of the blade always on the outside of the line. * Rectify the left of the blades if necessary with the help of a plane. * Fix the 3 blades together with the help of the clamps and equalize all the irregular planes. All the 3 blades needs to be strictly identical. * Mark the position of the leading edge ridge for it to stay where it is. It will be its landmark. stay where it is. It will be its landmark. )
    • Ceramic water filter  + ( *'''Clay :''' Clay is the base material *'''Clay :''' Clay is the base material for the water filter device. A clay pot allows for extremely slow movement of water through the natural pores that exist between the fired clay tablets. The size of these pores has been measured (using an electron microscope) and found to be between 0.6 and 3.0 microns (μm). They are able to eliminate most bacteria, protozoa and helminths (Lantagne, 2001a), as well as dirt or sediment and organic matter. The clay used to make classical pottery may be suitable for the production of water filters. However, hydraulic conductivity and pore size can vary widely depending on the type of clay, potentially to the point of not being suitable for flow rates and / or microbiological removal (Oyanedel-Craver and Smith, 2008, in Lantagne et al, 2010, [1]). A high content of sand or silt in the clay can reduce cross-linking of the clay and weaken the structure of the filter. On the other hand, an overly refined clay (smaller particles) has a greater water holding capacity and is therefore more prone to shrinkage and cracking during firing. As the characteristics of clay are a critical factor in the success or failure of ceramic water filter production, it is recommended that you carefully study the sources and potential types of clay before committing significant resources. Potters for Peace has produced a document providing details of the clay test, listed in the "Reference Note" section [18] *'''Combustible material :''' "Combustible" organic materials, such as sawdust or ground rice husks, are added to the clay mixture. When exposed to the high temperatures of the kiln, the "combustible material" burns, leaving behind cavities in the fired clay. Water moves more easily through cavities than through pores in clay. Therefore, the presence of the cavities decreases the distance that water must travel through the clay substrate, and therefore increases the overall flow rate of the filter. It is important to carry out tests on your materials. The ratio of clay to combustible material is important for establishing the flow rate and therefore the efficacy of the filters. *'''Colloidal silver''' : Colloidal silver is a solution made of suspended nanoparticles of silver and silver ions. It has been used as a natural disinfectant in medicine for many years. Although the exact mechanisms of bacterial destruction are not yet fully understood, it appears that colloidal silver breaks down the cell walls of bacteria and then binds to their proteins, thus disrupting their function [[https://www.hwts.info/document/8bda3e01/investigation-of-the-potters-for-peace-colloidal-silver-impregnated-ceramic-filter-report-1-intrinsi 2]] [[https://www.hwts.info/research/1245c13a/protozoa-and-virus-disinfection-by-silver-and-copper-embedded-ceramic-tablets-for-water-purification 3]]. Today it is mainly produced by electrolysis. The silver applied to the inside and outside of the filter is absorbed into the pores of the clay. The silver ions are reduced to elemental silver and form colloids inside the walls of the filter. Silver acts as a biocide against bacteria when there is sufficient contact time (= not too large pores). cient contact time (= not too large pores). )
    • Ivy liquid detergent  + (Collect around 50 leaves for 1L of water Collect around 50 leaves for 1L of water
      *Where to find ivy Ivy is a shade plant that generally grows on tree trunks but also on the north faces of buildings and low walls. *Recognise ivy Ivy leaves are alternate, with a fairly sturdy limb, dark green or slightly whitish around the edges. Young leaves are star-shaped, while adult leaves have two different shapes depending on their function: - stem leaves are palmatinervate with 5 more or less deep lobes (sometimes 3) - those of floriferous stems (with access to light) are oval, with a sharp apex
      ith access to light) are oval, with a sharp apex)
    • Insulated mattress  +
    • Fanny pack kakemono design  + (Copy the attached pattern onto the coloured part of the kakemono (unlike the photo in the tutorial). Then cut out the different parts using scissors. Pattern inspired by the video: https://www.youtube.com/watch?v=tS9vXfhAzlU&feature=youtu.be)
    • Face mask for coronavirus - Quick version  + (Cut out 1 or 2 or 3 rectangles (depending Cut out 1 or 2 or 3 rectangles (depending on the fabric combination chosen) measuring 20x28 cm. Layer them inside out. Stop the edge threads with the serger, or if you don't have one, with a simple sewing machine, using the zig-zag stitch. Depending on fabric elasticity, adapt zig-zag stitch sizes. First test it on a scrap of fabric.sizes. First test it on a scrap of fabric.)
    • Solar air heater  + (Detailed plans and CAO have been realised Detailed plans and CAO have been realised by [https://www.enerlog.fr/ Enerlog]. They are available in open-source here : https://cloud.ecutsa.fr/index.php/s/apRoi395xdQb52T#pdfviewer Those plans have been used for the first version built during a workshop. They are shared here in order to respond to one of the objective of Enerlog: to support the reappropriation of the knowledge by the citizens by sharing knowledge and promote its transmission.ng knowledge and promote its transmission.)
    • Linocut  + (<div class="mw-translate-fuzzy"> Col
      Collect the fabric you want to customize.
      '''_____________________________________________________________________________________''' '''Collect the fabric you want to customize.''' '''_____________________________________________________________________________________''' '''
      اجمعوا القماش'''
      اجمعوا القماش''')
    • Linogravure/ar  + (<div class="mw-translate-fuzzy"> '''
      '''اجمعوا القماش'''
      '''_____________________________________________________________________________________''' '''Collect the fabric you want to customize.''' '''_____________________________________________________________________________________''' '''
      اجمعوا القماش'''
      اجمعوا القماش''')
    • Daba  + (Drill a hole across and perpendicular to the end of the bamboo handle. Then drill a second hole across and perpendicular to the daba blade. Next, insert a wooden dowel into the hole to secure the blade to the handle.)
    • Bokashi “Kitchen compost”  + ( * Drill numerous holes at the bottom of the compost bucket with the 3mm bit. )
    • Functioning, maintenance and regeneration of lead-acid batteries  + ('''Equipment''': Choose your battery caref'''Equipment''': Choose your battery carefully according to the intended use.
      Never mix new and used batteries.
      Never mix batteries of different technologies.
      Correctly and solidly install the wiring of your battery bank to avoid fires.
      Regularly check the connectors if they are subject to vibrations.
      *'''Detection and Prevention of Deep Discharge''': Battery life is directly related to DoD or depth of discharge. It is, therefore, very important to prevent any discharge over 50% !'''
      **How to know the level of charge (SoC)? ***Simply measuring the voltage does not suffice as several factors affect the battery voltage. ***A [https://www.victronenergy.fr/battery-monitors battery monitor] must be used. It calculates not only the voltage but also the charge and discharge currents, which allows the state of charge to be calculated in real time. **How to avoid deep discharges? ***The idea is to control the level of charge (SoC) and to disconnect the consumption loads as soon as they fall below a certain level. ***Use a battery protector/[https://www.victronenergy.fr/battery_protect/battery-protect Battery Protect] or a configurable solar charge regulator, for direct current (DC) equipment. ***Use the dry contact relay (voltage-free relay) of your battery monitor if it is equipped with one. ***Set the low battery voltage threshold on your inverter for alternating current (AC) equipment (read the instructions carefully). *'''Pay attention to the temperature: ''': This factor has a very important influence on the life of the batteries. It is very important to keep the batteries at “cool” temperatures, around 20°C. **Technical roome : Always choose the coolest room or location. Never leave batteries exposed to direct sunlight. If the place is still too hot, one should consider cooling ventilation of the room or the battery container. **Aeration and ventilation : Always keep space between the batteries (about 5 cm), do not put them against each other. If the batteries are inside a battery box or in a cabinet, there must be air circulation. **Temperature compensation: When the temperature exceeds 30°C or is lower than 10°C for a long time, it is necessary to change the charging voltage.
      Battery not in use – Self-discharge: When a battery is not in use, it slowly discharges. This phenomenon depends on the type of battery and the temperature. o An unused open battery must be recharged every four months at room temperature (between 10-25°C). o An unused open battery must be kept permanently charged in temperatures below 0°C. o Sealed batteries can be left for up to 6 to 8 months without recharging at ambient temperature. o When a system containing batteries (RV, car, etc.) is not used for a long period, disconnect the batteries to avoid leakage currents.
      *'''Correct charging voltages''': Never recharge the batteries with a voltage higher than that recommended in the manufacturer's data sheet. Use a charger with at least 3 charge stages (Bulk, Absorption, Float).
      *'''Correct charge/discharge current''': '''It is recommended '''never to charge or recharge''' lead batteries at '''more than 0.2C''', i.e. 20% of the capacity of the battery bank (ex: 20A for a battery bank of 100Ah).
      When sizing a photovoltaic installation, make sure that the maximum output current is less than 20% of the battery capacity. Let: Imax (A) = Pmax (W) / Ubat (V) < 0.2C



      ing a photovoltaic installation, make sure that the maximum output current is less than 20% of the battery capacity. Let: Imax (A) = Pmax (W) / Ubat (V) < 0.2C</div> </div> <br/> <br/> <br/>)
    • Made-to-measure mosquito net  + (First of all, you need to '''measure the sFirst of all, you need to '''measure the size of your window'''. You need to measure the '''empty space''', i.e. the '''smallest opening''', where you can put your hand. To do this, use a tape measure to measure the '''height/length''' and '''width''' of the window, as shown in the diagram.
      Measuring your window is the essential step in the tutorial, without it you won't be able to make a mosquito net

      the tutorial, without it you won't be able to make a mosquito net</div> </div><br/>)
    • Haybox or fireless cooker made of a wool blanket  + ( * Fold the blanket into thirds and check * Fold the blanket into thirds and check that this is enough to enclose your stewpot. * Cut the blanket into three squares of equal size * With the rest, cut two squares the width of the stewpot * Sew these two small pieces in top of each other at the centre of one of the larger squares to make a double base for the stewpot * Overlay the three large squares on top of each other * Sew them together by hand around the edges Sew them together by hand around the edges )
    • Solar desalinator  + (For this model, the chosen floor area is 1For this model, the chosen floor area is 110 cm horizontal by 66 cm vertical. The wooden battens used have a section of 44 mm by 22 mm. The thickness of the frame is 44 mm. The frame is assembled with screws. At about 10 centimeters from the bottom of the frame, a cleat is added, as can be seen in the picture. It makes it possible to stiffen the frame, to stretch the sheet and to separate the freshwater and seawater parts (no risk of salt contamination).ter parts (no risk of salt contamination).)
    • Closed-loop hydroelectric generator  + (For this step, we started by taking a bicyFor this step, we started by taking a bicycle wheel and removing the tyre from it. The spokes are screwed to the wheel and we had the option of unscrewing them to insert metal spoons that we had previously drilled with a drill press, and then screwing them back in. We bent them so that we didn't have to cut off their tails. For the base, we took a plank of wood, cut it and screwed it together as shown in the photo.screwed it together as shown in the photo.)
    • Energy use in households  + (In France, buildings account for 45% of thIn France, buildings account for 45% of the total energy consumed, followed by transportation (33%), industry (19%), and agriculture (3%). Two-thirds of the energy consumption in this category comes from housing and one-third from service sector buildings. Within the home, in 2013, 67% of consumed energy went toward heating the home, 10.4% toward heating water, and 6% toward cooking. The remaining 16.6% was used for lighting, household appliances, office equipment, and hi-fi, all of which is grouped under the term “specific energy”. The 16,000 kWh consumed by each household costs just over €1,700 per year. In France, residential heating accounts for a larger portion of the total energy consumed (20.1%) than does industry (19%).consumed (20.1%) than does industry (19%).)
    • Thermal curtain - prototype 1  + (from outside to inside: *Overlay 4 layersfrom outside to inside: *Overlay 4 layers of the blue part of the mask. *Overlay 4 layers of the part in the middle of the mask (white-poplypropylene part). *Add a layer of the extended chip package (reflective layer). *Glue the rough part of the sponge previously cut into pieces. *Glue pieces of card on the lines where the seam will be made. *Mettre l'autre couche de l'aluminium (pour réfléchir la chaleur qui est à l'intérieur). *Superposer 2 couches du tissu de polypropylène.
      couches du tissu de polypropylène. <br/>)
    • Bio-sand filter for drinking water  + ( * Grind slightly the inside of the PVC pl * Grind slightly the inside of the PVC plug (using sandpaper) and the outside of one end of the PVC pipe. Stick them together using PVC glue. * Drill a hole of the bends diameter in the flexible pipe, 75cm from the bottom of the PVC. Connection between pipe and bend will have to be perfectly sealed. * Drill many holes in the cover (it has to be a plastic cap). '''Remark''' : It it recommended that the cover is perfectly adapted to the tube and that is can also be used as "sieve", so that added water would fall slowly on the sand without disturbing the biological layer. nd without disturbing the biological layer. )
    • Warmer  + (Here are the quantities for one warmer ! THere are the quantities for one warmer ! The mass of vinegar depends on its concentration.
      ===Quantity for one warmer=== 35g baking soda
      Concentration of vinegar [%] [g Mass of vinegar [g] Approximate volume of vinegar [mL
      6 415 415
      8 315 315
      10 250 250
      12 210 210
      14 180 180
      16 155 155
      These values are approximate. You can find out how to calculate them in the theoretical sections.
      NB: The density of vinegar is very close to that of water, 1kg for 1L.
      ;</tr><tr> <td>14 </td><td>180 </td><td>180 </td></tr><tr> <td>16 </td><td>155 </td><td>155 </td></tr></table> These values are approximate. You can find out how to calculate them in the theoretical sections. </div> NB: The density of vinegar is very close to that of water, 1kg for 1L.)
    • Stirling Engine  + (W hereby list a few videos of diy stirlingW hereby list a few videos of diy stirling engine mor or less diy and in french languag W can find engin mad with a coca cola can (DDM Brico Voyageur https://www.youtube.com/watch?v=nBxKOkYx2rI), wooden engine made with glass syringes for the pistons (Incroyables Experiences https://www.youtube.com/watch?v=s79odgWz6BM) , a 125 cm3 manufactured engine with an estimated power of 0,8kW to 8kW (0,6 horsepower to 6 horsepower) considered the measurement of 800 rpm and a tray mass estimated between 100g and 1kg (French Stirling Fablab https://www.youtube.com/watch?v=Z24dZ3St_JE from series https://www.youtube.com/playlist?list=PLE1TyIvCXNyjlvWRi10LUsEMXKyRS6Ltx on channel https://www.youtube.com/@FrenchStirlingFablab) You can find notably resources to try to build your own stirling engin that you won't find in th text below As a bonus, for teachers, 1 example of a tractor and cran toys build in meccano here: http://cm1cm2.ceyreste.free.fr/stirling.htmle: http://cm1cm2.ceyreste.free.fr/stirling.html)
    • Bait for Melipona bees  + (To make a big amount of mixture • Mix 100ml of 90° alcohol and 300g of Bee propolis in the first bottle. • Leave to macerate in the shade for 7 days.)
    • Desert fridge - light version  + (Making (or finding) a cylindrical bag allowing the introduction of the container surrounded by 5 centimetres of sand under it and around it. Providing a slide and enough fabric height to be able to close the bag around the container.)
    • The Norwegian Kettle (Hay Box)  + ('''Note''': The small box must be at least'''Note''': The small box must be at least 1 cm higher than the cooking pot and at least 4 cm wider or longer 1) Using either a wood saw or a jig saw cut the wooden planks using the measurements taken previously 2) Assemble the wooden planks using nails and a hammer '''Planks for the small box''' - 2 planks (1 cm taller than the cooking pot) x (4 cm longer than the cooking pot) -2 planks (1 cm taller than the cooking pot) x (4 cm wider than the cooking pot) - 1 or several planks (4 cm wider than the pot) x (4cm longer than the pot) than the pot) x (4cm longer than the pot))
    • Pallet benches  + (<nowiki>To dismantle a pallet, take To dismantle a pallet, take it slowly and don't force it, otherwise you risk damaging the boards. Place the crowbar in the gaps, and tap the crowbar with the sledgehammer so that it fits into the gap, repeating the process in different places until you feel the boards coming loose. Note that if you break the ends of some of the boards, it's not a big deal, as some of them will be cut off later.

      Follow the boning of the following pallets:

      * Start by removing planks 2 and 4 from the top.
      * Turn the pallet over and remove the blocks from boards 1, 3 and 5
      * Remove the boards attached to the blocks
      * Tap the nails on boards 1, 3 and 5 to remove them.
      * Similar method on this tutorial (https://www.youtube.com/watch?v=tQnQkdUS3yo)
      ar method on this tutorial (https://www.youtube.com/watch?v=tQnQkdUS3yo)</nowiki>)
    • Cultivation of oyster mushrooms  + ( *Open the sterilized bottles to inoculate *Open the sterilized bottles to inoculate them with your mother spawn, rich in mycelium, delicate passage because it is necessary to be fast enough to limit the risks of contamination during the opening of the bottles. It is important to work in a sterile environment during this operation (clean hands, clean clothes, etc...). *Using tweezers previously sterilized in rubbing alcohol, place the ends of cardboard boxes covered with mycelium on the substrate of your bottles. *Close the bottles immediately and put them in your incubator at a temperature of 20-30°C, without light. *Using tweezers previously sterilized in alcohol at 70°C, place the ends of cardboard boxes covered with mycelium on the substrate of your bottles. *Close the bottles immediately and put them in your incubator at a temperature of 20-30°C, without light. at a temperature of 20-30°C, without light. )
    • Passive speaker  + (In order to carry out these tests in the bIn order to carry out these tests in the best possible conditions, you need to go to a place that is as quiet as possible (this helps to avoid unwanted noise). The microphone and loudspeaker to be tested should then be placed on a stable surface with a constant distance between them. We then play white noise from the loudspeaker, which will be recorded on audacity. The analysis -> plot spectrum option will show the distortions in the sound and allow you to compare the different speakers. allow you to compare the different speakers.)
    • Dry shampoo  + ( * Place one or a mixture of the basic pow * Place one or a mixture of the basic powders listed above in your small container. * If you need to adapt the colour, mix with one or more spices to obtain the desired colour. * Place in the final container
      Optional: some people add essential oils. This is not necessary for preservation or hair care. Dry shampoos can be used to tide hair over or replace a few shampoos (to space out the washes) but are not a treatment in themselves. The smell is not essential either (especially if you adapt the colour)
      . If you really want to use essential oils, bear in mind that they are not perfumes, but medicinal concentrates of powerful plants (check the recommendations for use and test your skin reaction before use in a product) which require a significant amount of plant resources and energy. If possible, use local essential oils.
      a significant amount of plant resources and energy. If possible, use local essential oils. )
    • A wood-saving oven  + (Place the 10 cm diameter pipe between the hole left in the arch and the roof, so it's tight)
    • Children's bikes  + (1 - Preparing the tools Make sure you hav1 - Preparing the tools Make sure you have the appropriate tools to hand: spanners of various sizes, pliers, a screwdriver and any other spanners specific to your model of bike. 2 - Identification of components to be dismantled Examine the bike and identify the components that need to be dismantled. This may include the seat, pedals, brakes, handlebars, wheels and chain. 3 - Withdrawal of the seat Use a suitable spanner to unscrew and remove the seat from the bike. Be careful not to damage the seatpost during this process. 4 - Disconnecting the brakes Use a spanner to unscrew the brake cables or remove the brake callipers, depending on the type of braking. Be sure to identify each cable to make reassembly easier later. 5 - Removing the handlebars Unscrew the handlebar pivot bolt using an appropriate spanner. Note the position of the handlebars for correct reassembly. 6 - Removing the wheels Use a spanner to unscrew the wheel axle nuts. Remove the wheels from the frame, making sure you understand the fastening system used. 7 - Removing the chain Use pliers to remove the chain from the crankset. This may involve using a quick link or removing the rear derailleur. 8 - Removing the freewheel Allow plenty of time for this part, as it involves completely dismantling a wheel (cutting out the spokes, etc.). 9 - Cutting off one of the rear legs Using the appropriate saw, start cutting out the hind leg according to the marks you have made. Follow the lines as precisely as possible to ensure a clean cut. 10 - Creating an attachment to link the two bicycles The clamp is fixed to the seatpost of the front bike and is secured in the fork of the adapted bike. 11 - Welding The penultimate step is to weld the different parts together. To do this, you need to calculate the dimensions carefully to avoid having to redo everything. 12 - Addition of the safety/comfort section In addition to the weld on the seatpost to attach the adapted backrest, Velcro fasteners can also be added to the pedals.fasteners can also be added to the pedals.)
    • Micro-gasifier Cooking Stove  + (- Put tin can (2) into the large tin can (1) as shown in the diagram. - Place tin can (3) on top of the two other tin cans which have been nested one inside the other. - The pyrolytic stove is now ready for you to use !)
    • Linogravure  + ('''Récupérer le tissu que vous voulez cust'''Récupérer le tissu que vous voulez customisez.''' '''_____________________________________________________________________________________''' '''Collect the fabric you want to customize.''' '''_____________________________________________________________________________________''' '''
      اجمعوا القماش'''
      اجمعوا القماش''')
    • Linogravure  + ('''Récupérer le tissu que vous voulez cust'''Récupérer le tissu que vous voulez customisez.''' '''_____________________________________________________________________________________''' '''Collect the fabric you want to customize.''' '''_____________________________________________________________________________________''' '''
      اجمعوا القماش'''
      اجمعوا القماش''')
    • Solar water heater  + (Refrigerators are numerous in waste collecRefrigerators are numerous in waste collection centres, it is necessary to identify those which have the adequate grids (see Preface - Grid) and of the largest possible dimension. Pinching the pipes at the outlet of the compressor will limit the exhaust of refrigerant gases. Cut the pipes as close as possible to the compressor to ensure maximum length with the grid. Unscrew the grid. Wash the grid with soapy water. Blow a blower into the pipes to remove impurities. Seal the pipes with tape to prevent impurities from getting into them, as they may have a small diameter and become obstructed.ve a small diameter and become obstructed.)
    • Brick wallet  + (- Rinse the inside thoroughly with water - Dry the brick with a cloth - Dry the inside of the brick)
    • Hand washing machine  + (Saw off the top of the bucket/barrel that will make up bucket n1 (black): the washing machine drum. Saw off the second bucket/barrel (Bucket 2 - Yellow) to allow the drum to fit inside the second seal. For a better finish, sand the cut ends.)
    • Ash and animal fat soap  + (A soap is normally composed of a fatty aciA soap is normally composed of a fatty acid (here animal fat) and a basic agent (high pH) such as soda or potash (here made from ash). These two compounds create a saponification reaction that creates soap. The Chemical Process Saponification is the reaction of a fatty substance with hydroxide ions (provided by an alkali such as potash or soda) to give a carboxylate ion (soap) and glycerol (also called glycerin). Soaps are therefore mixtures of carboxylate ions and metal cations (sodium or potassium ions). The carboxylate ion is a surface-active agent that lowers the surface tension of water: it is a detergent. It ensures washing thanks to 4 qualities : The wetting power: soapy water can penetrate the small interstices of the surface in contact (cloth, skin, table, plate...) more effectively than water ; Emulsifying power: the carboxylate ions agglutinate around the dirt and penetrate between it and the surface in contact until they isolate the dirt from this surface. They form micelles containing small particles of dirt. Carboxylate ions have a lipophilic end and are therefore particularly effective against fatty substances; The dispersing power: due to the properties of the carboxylate ions and the structure of the micelles, they repel each other and are therefore dispersed in soapy water; Foaming power: a film of carboxylate ions is formed on the surface of water with low surface tension. By agitating the soapy water, air bubbles can then be trapped. The foam does not intervene as such in the washing but is an indicator of the surface tension of the liquid and thus of its detergent power.he liquid and thus of its detergent power.)
    • Autonomous solar watermaker  + (1 Solar concentrator 1.1 Frame 1.2 M1 Solar concentrator 1.1 Frame 1.2 Main reflector 1.2.1 Support for main reflector 1.2.2 Mirrors 1.3 Secondary reflector 1.3.1 Support for secondary reflector 1.3.2 Secondary reflector and copper pipe 2 Watermaker 2.1 Evaporation tank 2.1.1 Frame 2.1.2 Stages 2.1.3 Copper pipe 2.2 Condensation tank 2.2.1 Frame 2.2.2 Copper pipes 2.2.2.1 Copper condensing coil 2.2.2.2 Copper water inlet pipe 2.2.2.3 Copper water outlet pipe 2.2.3 Cover 3 Total circuit 3.1 Circuit closing pipes4 3.2 Pump 3.1 Circuit closing pipes4 3.2 Pump)
    • Solar Oven (box-type oven)  + (1) Take the [[:Fichier:Plans cuiseur solaire.jpg|plans de la boîte]] 1) Take the [[:Fichier:Plans cuiseur solaire.jpg|plans de la boîte]] , the plywood panels and the tape measure 2) Copy the dimensions of the side A on one of the panels with a ruler. 3) Use the protractor to create an angle of 60° and another one of 30° as shown on the schema. 4) Fix the panel on the working table with the clamp. 5) Protect the ears and the eyes 6) Cut following the drawings with the jigsaw. 7) Copy the dimensions of the schema on the second panel to realize the side B. 8) Cut the second panel 9) Draw, cut the panels C, D and E '''Comment''': if at the cutting of the panels, the borders of the plywood panel contains thorns, it can be useful to sand the borders with sandpaper. The panels being voluntary thin, it is necessary to fix on the panels A and B the sticks that will be used as support to screw the panels C, D and E. The sticks will be, in ideal, of the same thickness of the isolator. Cut the sticks 1) Take the sticks and draw the desired dimensions 2) Fix the sticks on the clamping and cut with a saw. Fix the stick to the panels 3) Position one of the stick and use the clamp to maintain the whole 4) Return the panel and screw with a screw (two screws per stick is enough). '''Comment''': Keep in mind to keep the thickness of a panel between the end of the panel and the stick (it is at this place that the panels C, D and E will come). 1) Screw the panels C, D and E on the sticks, 3 screws are enough. We obtain so the inside of the box. The isolator will be added and then the inside box will be covered with reflectings. '''Comment''': To screw, it is sometime judicious to pre-screw with a drill or a broach.ous to pre-screw with a drill or a broach.)
    • Manual Pump (vertical)  + (The aim of this step is to check the equipThe aim of this step is to check the equipment is in order without gluing the components together. Slot the components together as per the following diagram: You can even check if it is working or not. For best results: the areas circled in blue must be as short as possible.cled in blue must be as short as possible.)
    • Boiler stove  + (The first step in making the boiling stoveThe first step in making the boiling stove is to collect all the materials we need. To recover the 208-litre drums, you can pick them up from local businesses (from a garage, for example), and you'll be lucky if they're already empty. For the cumulus, you can collect it from places where they donate equipment, such as a recycling centre, where the equipment has already been used. To get a security system, you're going to have to spend money. We want our system to be as reliable as possible, so we'll need to spend a bit of money. For our project, we decided to use a security unit. A pipe will be needed to evacuate the smoke. We use the same type of pipe as for wood-burning stoves to evacuate the smoke.wood-burning stoves to evacuate the smoke.)
    • Garde-Manger: Pantry Storage  + (The first step in using a food-storage sysThe first step in using a food-storage system, such as the one proposed here, is for the user to question the ways in which they buy and consume. Given that food storage modules that we're going to propose below are mainly designed for raw and fresh foods, it would be complicated for the user feeding themselves with ready-made meals to benefit from the technical suggestions provided, for example. The "Zero Waste" approach, originating from Franco-American Béa Johnson, is an excellent method to put into practice. It enables, at the same time, a significant reduction of waste produced globally (packaging, plastic, etc). [https://www.zerowastefrance.org/ Zero Waste France] is a very good resource for complementary information on helping consumers take action.ormation on helping consumers take action.)
    • Collective laundry practice  + (<u>The individual reflection:</u&The individual reflection: Take a pen and a paper, and try to answer to these questions. The goal is to define the habits and needs of each laundry practice. ''1. How often do you do the laundry?'' ''2. Do you sort your clothes?'' ''3. If yes, how?'' ''4. Which machine programs do you use?'' ''5. What do you like about your practice?'' ''6. What would you change in your practice?  ''our practice?'' ''6. What would you change in your practice?  '')
    • Orangepi-raspberry pi nextcloud server (photovoltaics powered)  + (The links to the photovoltaics material arThe links to the photovoltaics material are in the autonomie.ods file (readable with libreoffice) attached to this tutorial. - raspberry pi : 42€ on leboncoin -Orange pi : single board computer: Orange pi 5 single board computer with 4,8,16 or 32 Go of ram 2,4Ghz ARM Cortex-A55 CPU This card is compatible with nvme pcie 2.0 hard drives (2242 or 2230, pcie is retrocompatible ie 3.0, 4.0 and 5.0 work with lower speed on orange pi 5) Same principle as here but a bit more powerful and we can plug a hard drive (useful for nextcloud which is made to host files) and it starts automatically on a usb stick Price: 143€ brand new on aliexpress in version 16 Go on the 2nd of august 2023 Second hand on leboncoin: we find more easily raspberry pi at around 100€. It is necessary to buy a small box at 10€ (or make one) to avoid a naked single board computer -hard drive Here we use a kingston usb stick of 32Go and a nvme samsung 512Go card We can plug a hard drive of higher capacity in usb, or a nvme card (nvme pcie 2.0 ssd 2242 or 2230) compatible with pcie 3.0 4.0 and above but the speed is reduced A nvme samsung 2242 card of 500Go is about 50€ on the 2nd of august 2023. -usb stick : 10€ - rj45 cable: 5€ -Internet box or 4G modem according to your internet connection -solar pannel: here we use a flexible 120W pannel bougth 115€ brand new but we can find second hand ones at 30€ on leboncoin for an equivalente peak power. Note: for the theoretical need. See file autonomy.ods -second hand battery: use the previous lead acid battery of your car when it crashes when it's too hot in summer! -12V/24V-usb 5V battery converter: 20€ avoid amazon if you can - pwm regulator 30A: 30€ brand new if you dont buy corporate brand - DRL (day/night switch 13V): 1,5€ brand new (key word "Kit de feux de jour à LED pour voiture, contrôleur marche/arrêt automatique DRL" in french) -electric mc4 cable: 20€ Total second hand price for orangepi: 256,50€ Total brand new price for orangepi: 431,50€ Total second hand price for raspberry: 165€ See autonomie.ods - for raspberry: 165€ See autonomie.ods -)
    • Extinguisher  + (The low-tech fire extinguisher is based onThe low-tech fire extinguisher is based on the reaction between baking soda and acetic acid vinegar. Water absorbs heat by evaporating; baking soda decomposes during an endothermic reaction (which absorbs heat) and creates water when exposed to a temperature exceeding 270 ° C; carbon dioxide is a heavy gas that "displaces" oxygen and "starves" the fire. A hole is drilled in the bottle. When you want to activate the fire extinguisher, pierce the bag containing baking soda. Vinegar, mixed with water, reacts with baking soda to form carbon dioxide, water and sodium acetate. By shaking the bottle, the reaction is accelerated: the carbon dioxide produced pressurizes the bottle, and a CO2-water mixture is ejected through the hole, which is pointed towards the fire. Water, carbon dioxide and soda extinguish the fire, and the foam created by the washing-up liquid prevents it from being re-ignited. liquid prevents it from being re-ignited.)
    • Light bottle cutter  + (The piece of wood used in this tutorial is 22 x 2 x 2 cm. You can use one a bit larger but you do not need to use a longer one.)
    • Solar coffee roaster  + (The roaster is made of 3 different parts : *The roaster itself, using a salvage cement mixer *The solar parabola, which concentrates solar energy into the roaster *A mechanical part, which makes the roaster turn)
    • Desert fridge  + (The Zeer Pot is: 2 terracotta (or clay) pThe Zeer Pot is: 2 terracotta (or clay) pottery interwoven with a layer of moist sand of about 4 cm between the two. The inner jar contains food to keep cool. The sand allows the refrigeration of the system. The outer pot contains it all. The water contained in the sand needs energy to be transformed into steam, this is the principle of evaporation. In this case, the heat contained in the internal pot will supply this energy and allow the water to evaporate. This thermal reaction lowers the internal pot temperature and keeps the food cool.l pot temperature and keeps the food cool.)
    • Solar lamp with reused lithium cells  + (This tutorial shows how to recover computeThis tutorial shows how to recover computer cells to make a new battery. Powered by a solar panel, or by a USB port, it will allow you to light an LED lamp. The system works around three modules: * the energy reception module: the solar panel and its charge controller * the energy storage module: the battery * the module that gives back the energy: the LED lamp and its voltage regulator '''Energy Receiving Module: Photovoltaic Panel & Charge Controller''' The photovoltaic panel concentrates the energy of the sun. It allows to recover its energy in order to store it in the battery. But be careful, the amount of energy received by the panel is irregular depending on the time of day, the weather... it is important to install a charge/discharge regulator between the panel and the battery. This will be protected against overload, among other things. '''Energy storage module: the battery''' It is composed of two lithium cells recovered from a computer. To put it in a nutshell, a battery is a bit like a box containing several batteries: each of them is a cell, a unit that supplies power to the device by electrochemical reaction. The cells found in computers are lithium cells. They all have the same capacity to store energy, but their ability to make it is different for each. To form a battery from cells it is important that they all have the same ability to deliver energy. It is therefore necessary to measure the capacity of each cell to compose homogeneous batteries. '''Module that renders the energy: the LED lamp, the 5V USB port and its voltage converter''' Our battery supplies us with 3.7V power and the LED lamps we used operate at the same voltage. In addition, the USB ports provide a voltage of 5V. We therefore need to transform the cell energy from 3.7V to 5V: using a voltage converter called DC/DC booster3.7V to 5V: using a voltage converter called DC/DC booster)
    • Batteries recovery  + (This tutorial shows how to recover the batThis tutorial shows how to recover the battery cells from a computer in order to create a new battery. Powered by a solar panel or by a USB port, it will allow you to light a LED lamp. The system works around three modules: * the energy reception module: the solar panel and its charge controller * the energy storage module: the battery * the module that gives back the energy: the LED lamp and its voltage regulator '''Energy Receiving Module: Photovoltaic Panel & Charge Controller''' The photovoltaic panel concentrates the energy of the sun. It allows to recover its energy in order to store it in the battery. But be careful, the amount of energy received by the panel is irregular depending on the time of day, the weather... It is important to install a charge/discharge regulator between the panel and the battery to protect it against overload, among other things. '''Energy storage module: the battery''' It is made of two lithium cells recovered from a computer. To put it in a nutshell, a battery is a bit like a box containing several batteries: each of them is a cell, a unit that supplies power to the device by electrochemical reaction. The cells found in computers are lithium cells. They all have the same capacity to store energy, but their capacity to deliver it is different for each. To make a battery from cells it is important that they all have the same capacity to deliver energy. It is therefore necessary to measure the capacity of each cell to compose homogeneous batteries. '''The module that gives back the energy: the LED lamp and its voltage regulator''' Our batterie delivers a 3.7V current and our LED lamps work with 12V. So we need to transform the cell's energy from 3.7V to 12V : thanks to the voltage regulator called DC/DC booster. A small screw on this module allows to regulate voltage. You can set it to 12V - or another voltage according to your LED's characteristics.r another voltage according to your LED's characteristics.)
    • The how to of how to's  + (''' 1 - Tools''' A camera, a microphone, ''' 1 - Tools''' A camera, a microphone, SD cards, batteries, a tripod. Check before use the state of your tools : SD card with sufficient disk space, battery charged, etc. ''' 2 - Location of the movie''' Choose where does the action takes place, in order to have a good sound quality and good luminosity: - Indoor, beware of the lack of light and artificial lights, that will impact your video quality. Think of fridges, clocks as well, that could create parasite sounds. These will be disappointing for the spectator watching your video. - Outdoor, beware of backlighting and the lack of light. Concerning the sound, the wind is fatal. Protect your microphone and its exposure ! "In both cases:" - Be careful that no big light pits are in your field of view. - Avoid too big spaces, the backplane should rather be short. - Filming during the day is highly recommended. At night, you'll get granulas on your images. ''' 3 - Positionning of the camera''' In order to know where to place the camera, ask the actor what he's going to do at each step. It is therefore easy to place the camera without being annoyed with his hands. On the workbench should only be present the material used at the precise step. This permits not to be visually polluted. ''' 4 - Scenes''' "Dissect steps" : Film one scene per step, if possible. - Vary short and large scenes to air the video. - For explicative scenes (explanation of a step, of the context), prefer large scenes. - For active scenes (filming the action), prefer short scenes. - It is highly recommended to film two frames per action. - Head to foot framings are not recommended, prefer middle range frames or short frames. - When someone is speaking, do not "cut his head off" during framing. Let an empty space above him. - Avoid to place the person right in the center of the frame. Putting him on the side will bring dynamism to your scene. - Filming static scenes is highly recommended to avoir any shaking. - Put the camera on a tripod or on something static. ''' 5 - Focus''' For the focus, check whether the camera is on automatic or manual mode. - If it is on automatic, well check that the camera is focusing on the action and not on the person head. - If it is on manual, set the focus on the action before starting to film. ""Example"": "Here, I'm going to melt the white wire on the + pole...". We need here a close plane, we focus on the object to melt, and we check that our hands are not between the object and the camera when we film. ""Be careful"" : For tutos realized with smartphones, the difficulty is to realize static scenes. Put the phone on a stable, static place during the whole sequence. ''' 6 - Filming in order to edit the video''' - Don't tell yourself that mistakes can be rectified at video editing. - Avoid to film in black and white or vertically. - Launching the video recordings, let a dead time before action starts or discussion begins in order to facilitate video editing. - Make simple rushes for get an easy video edition. ''' 7 - Content''' The video content will tighly be linked to the written step by step. "Context video : (2 minutes)" - Present the low-tech and its economical, environmental, social or other interests. - Present an issue solved by the low-tech (problematic and solution) - Do not hesitate to start from a larger context to a local one, or even personal one. - It is important to choose with the speaker, what is going to be said. Le scene will be explicative, so prefer a large frame scene. - Add cut-scenes (action) for this part don't be only a monolog in front of the camera. Think as well to make action scenes "on the field", that will be in concordance with the context. "Fabrication video : (5-10 minutes)" Ask yourself which kind of video is preferable to realize. Notably when speaking of explanations : will they be voice-overed, lived, or subtitled ? - Beware of hands between the camera and the action. - Always keep in mind that everyone has to understand the action. For this, it can be interesting to explain : "I'm doing this action for this reason, with this material that I got at this place ..." - Do not forget to mention safety intructions. "Dissect the fabrication in several key-steps:" - The functioning: present the functioning principle of the low-tech - The material : materials and tools necessary for the fabrication - The fabrication : dissect every step, one scene for one action, and explain them precisely, speaking loud and articulating. - The use : scenes on its situation. - Advices : It is possible to finish the video giving some advices.e to finish the video giving some advices.)
    • Tawashi  + (Use your pencil and ruler to draw a square 12cmx12cm. Put 20 nails every 2 cm. With your hammer, firmly plant the nails into the board onto each of the 20 dots.)
    • Flower pot  + (Using a cutter or scissors, cut the plastic bottle to the desired height for the pot. You can adjust the height according to the size of the plant you wish to place in it.)
    • Rug  + ( * Using a pair of scissors, cut the clothes into long pieces as shown in the adjacent image. )
    • Electrically-assisted bicycle  + (Video source : <u>https://www.youtubVideo source : https://www.youtube.com/watch?v=nikYUAnj7F0 Dismantling the hoverboard will depend on the brand and type of hoverboard. The instructions and images that follow are general but there may be details that vary. First of all, you need to remove the plastic shell that encloses all the electronic components. '''Note:''' Be careful with any wires connected to the plastic shells, such as the charging wire. See image 1 a basic diagram of the inside of a hoverboard. Unplug the cables and mark where they are connected, using marked tape if possible. In particular, keep the charging cable to one side and mark where it is connected on the motherboard. Carefully remove the battery after disconnecting it from the motherboard and removing the wires from the central cylindrical area. Keep the battery (1) (see image 3) as it will be used to power the bike's electric assistance motor. '''Caution! ''' The battery is the most dangerous electronic component of the hoverboard. Any risk of impact, particularly with sharp objects, must be avoided. If the battery is damaged (tears, holes, etc.) or appears swollen, it must not be used, as there is a risk of explosion or flame. The motherboard is an important element to keep to enable the battery to be recharged. You need to locate the "Charging socket" (2) on the charging cable you put aside earlier. Next, remove the "Sensor" boards (see image 2) to gain access to the motor mountings. At least one of the blocks of 4 screws needs to be unscrewed with an Allen key to obtain the motorised wheel that will drive the bicycle wheel (see image 4). It is possible to keep the fixing system to make it easier to attach the wheel to the bike.e fixing system to make it easier to attach the wheel to the bike.)
    • Small Recycled Bottle Boxes  + (Wash and dry plastic bottles thoroughly.)
    • Simple powerbank  + ( * Weld the '''-''' of lithium-ion battery * Weld the '''-''' of lithium-ion battery holder to '''+''' of the charge / discharge module. * Proceed in the same way for the '''-'''. * Insert the cell in the "lithium-ion battery holder", respecting the '+' and '-' polarity (at risk of explosion of the cell). * Test the charge and discharge of the cell via usb / mini USB cables: a color code of blue LED (charged) and red (discharged) on the load module allows to know the state of the cell. odule allows to know the state of the cell. )
    • Ram pump  + ( #When priming, water flowing into the inl #When priming, water flowing into the inlet line flows into the weir through the primary valve. #The acceleration of the water causes the primary valve to close suddenly. #The water column is suddenly braked and generates an overpressure in the pump casing (water hammer), which opens the internal valve. #Under the effect of this overpressure, water flows into the balloon (and the discharge duct), compressing the air volume until the pressures are balanced. #The pressure reversal closes the internal valve. #The water trapped under pressure in the balloon empties into the discharge line until the pressures are balanced (determined by the height of the pipe). #The closing of the internal valve has caused the pressure to drop, so the primary valve opens again. A new cycle begins.... Without accident, this process is perpetually renewed as long as it is supplied with water. [https://www.youtube.com/watch?v=hsCaMW7L2yI Video explanations] com/watch?v=hsCaMW7L2yI Video explanations] )
    • Wind turbine  + ('''Wind turbine''' 1 - Preparing the moto'''Wind turbine''' 1 - Preparing the motor 2 - Motor axis 3 - Preparing the rotor blades 4 - Aileron and base for rotor blades 5 - Assembly '''Electric circuit''' 1 - Rectifiers 2 - Capacitors 3 - tension stabilizer 4 - Connecting the USB port Motor protection Connecting the USB port Motor protection)