Tutorial de Low-tech Lab | Catégories : Énergie
Eolienne Piggott de 200w pour 1m20 d'envergure, auto-construite.
Eolienne Piggott de 200w pour 1m20 d'envergure, auto-construite.
éolienne, piggott, horizontale, wind, turbine, aimant, permanent, Low-tech Tour France, énergie fr fr 0
Retrouvez Ici la vidéo tutoriel
Basé sur les travaux de l'écossais Hugh Piggott, ce tutoriel a été réalisé en collaboration avec Aurélie Guibert, membre du réseau Tripalium, au sein du V.A.L à Valence.
Il s'agit de la fabrication d’une éolienne de puissance maximum de 200W en 12V pour une envergure d’1 m 20. Elle est dimensionnée pour de faibles besoins en électricité comme un réseau d'éclairage LED ou l’alimentation d’ordinateurs portables.
La partie distribution de l’électricité ainsi que le matage ne sont pas détaillés ici.
Le vent
La puissance que le vent fourni est proportionnelle au cube de sa vitesse. A titre d’exemple, l’éolienne de ce tutoriel reçoit dans son hélice 0,7W quand le vent souffle à 1m/s et mille fois plus à 10m/s.
Pour la calculer: P= 1/2 x Rho x S x v^3 avec P: puissance (W), Rho: masse volumique de l'air (environ 1,23 kg/m^3), S: Surface balayée par l’hélice (m²), v: vitesse du vent (m/s)
Il est donc indispensable d’étudier le terrain où l’on souhaite installer une éolienne pour voir si le vent souffle relativement constamment et avec une vitesse suffisante pour produire un minimum d’énergie.
Comme tout système, une partie de l'énergie est perdu par l'éolienne. En théorie, une éolienne ne pourra jamais transformer plus de 60% de l'énergie que le vent lui fournit, c'est la limite de Betz. Dans la pratique, sur le type d'éolienne développé dans ce tutoriel, le rendement peut atteindre jusqu'à 35%.
L'emplacement
En règle générale, il vaut mieux un terrain dégagé de tout arbre et toute habitation. Les éoliennes de mêmes tailles placées en villes ou sur des pignons de maisons produisent beaucoup moins à cause des turbulences du vent. De même, le vent est plus constant et puissant en altitude, il sera donc préférable d'installer une petite éolienne en hauteur, qu'une grande éolienne à faible altitude.
Coût
Bien que Low-tech, le coût de construction de cette éolienne avoisine les 350€ si tous les matériaux sont achetés. En comprenant le matage et l'électronique, le coût avoisine les 2000€. Il peut être intéressant de l’installer dans des zones hors-réseau dans une optique d’autonomie. Dans le cas d’un raccordement au réseau, ce n’est pas financièrement intéressant.
Youtube
Liste indicative de matériaux pour l'hélice, se référer aux chapitres pour précisions.
Liste indicative de matériaux pour la génératrice, se référer aux chapitres pour précisions.
Liste indicative des matériaux pour la structure acier, se référer aux chapitres pour précisions.
Liste indicative de l'outillage, se référer aux chapitres pour précision.
Remarque: L'intrados est la face des pales qui reçoit le vent, l'extrados est la face arrière.
Remarques:
1) Le bois sélectionné doit être imputrescible, relativement léger et facile à travailler. Le cèdre rouge, le pin d'Oregon, l’épicéa, le mélèze, le douglas peuvent par exemple convenir.
2) Pour ce tutoriel, la section du bastaing en cèdre rouge fait 150mm x 45mm.
3) Le paramètre qui détermine l'énergie transmise par le vent à l'hélice est la longueur de la pale et non sa largeur. La section du bastaing peut donc varier.
Remarques:
1) Placer les nœuds et défauts du bois plutôt en pied de pale, afin de ne pas fragiliser la partie la plus fine (milieu-bout de pale).
2) Sélectionner l'arête du bord d'attaque la plus propre possible. Cette arête ne sera pas modifiée durant la sculpture de la pale.
3) Prolonger le tracer du bout de pale de 4 à 5 cm afin de conserver une marge en cas de bris.
Remarque: en cas d'utilisation d'une scie circulaire pour la découpe, prendre garde à placer la largeur de la lame toujours du coté extérieur au trait.
Remarque: Pour garantir de bonnes cotes, la sculpture doit venir au plus près du trait de crayon sans l'effacer.
Remarque: Le segment AB forme un angle de 120° avec le pied de pale, qui sera nécessaire par la suite pour l’emboîtement des pales.
Remarque: Dans le cas de ce tutoriel, le point B se situe sur le périmètre du cercle. Ce n'est pas toujours le cas en fonction de la largeur du bastaing.
Remarque: Selon l'épaisseur du bastaing, il peut arriver qu'il n'y ait pas 17mm d'épaisseur en section 3. Tracer tout de même l'épaisseur en imaginant un point dans l'espace à 17mm du bord de fuite sur cette section 3.
Remarque: Pour garantir de bonnes cotes, la sculpture doit venir au plus près du trait de crayon sans l'effacer.
Remarque: La ligne des 30% correspond à l’épaisseur finale de la pale, c’est pourquoi on vérifie les cotes à cet endroit précis.
Remarque: Attention à ne pas faire d'éclat sur le bord de fuite, c'est une zone très délicate.
Une fois ce travail terminé sur les 3 pales:
Remarque: On préférera avoir un angle légèrement inférieur à 120° pour pouvoir pivoter légèrement les pales lors de l’assemblage.
Remarque: pour aider à l’emboîtement de l’hélice sur le reste de l'éolienne, il est possible d'agrandir les trous de 12mm en 14mm sur l'épaisseur du triangle et des pales, sans toucher au diamètre 12mm du disque.
Remarque: Pour un perçage précis, pointer le centre à l'aide d'un pointeau, pré-percer avec un foret de petit diamètre et ensuite à 12mm. Choisir une vitesse de rotation adaptée au matériau et au diamètre du foret. Bien lubrifier durant le perçage.
Fixer temporairement les deux pièces avec quelques points de soudure. Réaliser les 4 perçages à travers le socle de la fusée et le berceau.
Remarque: Si les 4 vis initiales de la fusée sont en bon état, il est possible de les récupérer en perçant uniquement le berceau et en vissant dans le socle directement. Dans ce cas, il faut faire attention à ne pas abîmer le filetage d’origine (qui est un filetage mécanique, ne peut pas être utilisé avec d’autres vis). Il est parfois nécessaire de raccourcir ces vis pour ne pas gêner lors de l’assemblage.
Remarque: Le stator est la partie fixe de la génératrice.
Remarques:
1) Si un étau est utilisé pour maintenir la tige filetée pendant la découpe, enrouler la tige filetée dans un tissu au niveau des mors avant de serrer pour ne pas abîmer le pas de vis.
2) Avant de couper, visser un écrou sur la partie de la tige qui va être coupée afin de pouvoir reformer le pas de vis au niveau de la découpe grâce au passage répété de l'écrou.
Remarque: Les bobines seront enroulées entre les deux disques de contreplaqué (épaisseur minimale 15mm), qu’on appelle les « oreilles ». Le petit rectangle de contreplaqué situé entre les deux oreilles est l’espaceur : c’est lui qui détermine l’épaisseur de la bobine. La forme intérieure des bobines est déterminée par les bords extérieurs des 4 gros clous, formant un rectangle de 46mm x 30mm. Ce rectangle correspond aux dimensions des aimants qui passeront devant.
Remarque: Pour faciliter le glissement du fil lors du bobinage, il est possible de chanfreiner la tranche intérieure des oreilles. Faire une marque au feutre sur la tranche des deux oreilles pour compter les tours plus facilement.
Remarque: Le stator est composé de 6 bobines de 76 tours, réalisées avec du fil de cuivre émaillé de 1,4mm de diamètre. Ce dimensionnement permet à la génératrice de produire maximum 200W en 12V sans endommager les fils. Afin de réaliser les 6 bobines, 1,5kg de fil de cuivre sont nécessaires.
Remarque: Il est impératif que toutes les bobines soient positionnées avec les spires tournant dans le même sens, soit horaire soit anti-horaire. Si ce point n'est pas respecté, la génératrice ne fonctionnera pas comme prévu.
1) Relier les entrées des bobines 1,2 et 3: c'est le point neutre.
2) Relier la sortie de 1 à l'entrée de 4.
3) Relier la sortie de 2 à l'entrée de 5.
4) Relier la sortie de 3 à l'entrée de 6.
Il se décompose en 4 parties: le socle, la bordure, l'îlot central et le couvercle. Bien penser à percer 3 détrompeurs pour le bon alignement du couvercle au moulage.
Remarque: Cette étape fait intervenir des éléments dangereux (résines, fibres, etc) Porter des gants latex et lunettes de protection jusqu'à la fin du moulage.
Remarque: le talc permet non seulement de charger la résine avec un matériau peu cher mais également de diffuser la chaleur lors du séchage de la résine et durant le fonctionnement futur de l'éolienne afin de ne pas endommager le stator.
Remarque: le rotor est la partie tournante de la génératrice entraînée par l'hélice.
Remarques:
1) Il est impératif que le disque soit en acier pour qu'il puisse conduire les champs magnétiques. Cela ne fonctionnera pas avec de l'alu ou de l'inox par exemple.
2) Il peut être plus facile de se fournir le disque tout préparé auprès d'artisans qui disposent d'outils de découpe précise (plasma, laser).
Remarque: Cette étape consiste à coller des aimants très puissants sur le disque en acier en alternant les pôles des aimants. Si l'alternance n'est pas respectée, la génératrice ne fonctionnera pas et risque des dommages.
Remarque: Faire très attention durant la manipulation de ces aimants. Etant très puissants, ils peuvent endommager les appareils électroniques, attirer des objets métalliques en tout genre et pincer très fort. Ils sont également fragiles et peuvent se casser durant les chocs.
1) S'il y a répulsion, le coller dans l'encoche adjacente en conservant bien ce sens: les 2 aimants ont les polarités positionnées de manière opposée.
2) S'il y a attraction, le retourner dans sa main, vérifier qu'il y a maintenant répulsion, et le coller dans l'encoche adjacente.
Remarque: Cette étape fait intervenir des éléments dangereux (résines, fibres, etc) Porter des gants latex et lunettes de protection jusqu'à la fin du moulage.
1) Une cornière de 206mm (50x50x6mm).
2) Un tube diamètre ext 42,2mm, longueur 100mm: Pivot éolienne.
3) Un tube diamètre ext 33,4mm, longueur 150mm: Pivot Safran.
4) Le berceau précédemment réalisé.
Remarque: La chaleur dégagée par la soudure peut avoir tendance à faire travailler le métal, déformer les pièces et les positions choisies. Pour éviter ce problème, réaliser quelques points de soudure à quelques endroits stratégiques sur le périmètre de la soudure puis tirer le cordon soudure.
1) Un tube diamètre ext 42,2mm, longueur 130mm: Pivot safran.
2) Un fer plat 50 x 50 x 6mm: Couvercle du pivot safran.
3) Un tube diamètre ext 33,4mm, longueur 700mm: Queue du safran.
4) Une cornière 30 x 30 x 5, longueur 250mm: Support safran.
5) Un contreplaqué taillé selon les envies de chacun, d'épaisseur 6mm et de 0,1m² de surface. (par exemple un triangle rectangle de hauteur 300mm et base 600mm): le Safran.
Remarque: Afin de pouvoir chargé une batterie 12V, il est d'abord nécessaire de transformer le courant alternatif produit par chaque phase en un courant continu.
Remarque: Il sera nécessaire d'installer un contrôleur de charge entre l'éolienne et la batterie.
Vous pouvez télécharger une fiche pédagogique créée par le Low-tech Lab dans la partie "Fichiers" du tutoriel (onglet au niveau de la section "Outils-Matériaux").
Hel-Low !
pour un projet d'habitat léger hippomobile, je cherche à concevoir une éolienne low -tech. Dans ce projet le poids a toute son importance. Je voulais donc connaître le poids approximatif de l'ensemble présenté ici.
Merci !
Salut !
La tête de l'éolienne est quand même relativement lourde. Je dirais dans les 25-30kg pour le tout.
A mon sens, pour un habitat mobile, une éolienne d'occasion en composite pourrait quand même être une option à regarder. Mais il n'y qu'en testant que tu sauras :)
Bon projet !
Bonjour, vous avez sûrement bien étudier la question mais ne serait-il pas possible de faire une éolienne low tech, sans néodyme qui est une terre rare ? Je pense à la solution d'utiliser un rotor en cage d'écureuil, il faudrait juste faire un système pour alimenter les bobines du stator, et pour le démarrage du rotor, on pourrait juste le lancer à la main dès que le vent se lève. Il y aussi la solution du rotor bobiné mais il faudrait des balais pour les alimenter donc un peu plus compliqué. Bref est ce qu'il y a déjà eu des tentatives d'éolienne à génératrice asynchrone sans aimant, et à quel point est irréalisable ?
Bonjour à toutes et tous, Déjà un grand merci pour ce tuto pour fabriquer son eolienne, ensuite, j'aurai besoin d'aide car mes connaissances en mécanique auto sont très limitées. Avez vous une référence pour le moyeu utilisé ? J'ai recherché sur des sites mais rien ne correspond (pas de cloche). Merci beaucoup pour votre retour. Bonne continuation Grégory
Bonjour à tous/toutes,
Je suis ingénieur agronome (promotion KULeuven-1990, et j'ai bien étudié et experimenté différents types d'éoliennes...J'ai construit ma première éolienne à l'âge de 15 ans (1980), sur base d'une roue de vélo d'enfant et 6 pales coniques découpées dans un tuyau d'égoutage en PVC: j'ai ainsi produit 10W en 6VDC, et j'ai constaté que mon éolienne était assez bruyante, mais auto-freinée à une certaine vitesse..., et ne pouvait donc pas s'emballer !!! J'ai appris plus tard ce que c'était que la limite de Betz !!!
Après mes humanités, en 1985, j'ai rencontré des autodidactes qui étudiaient et expérimentaient la faisabilité des éoliennes à axe vertical=VAWT... J'ai alors , bien plus tard, en 1997 reçu les plans de ces éoliennes VAWT par un ingénieur de Turbowinds: C3 (3M de diamètre) et C5(5M de diamètre); et j'ai construit à l'échelle 1:20ème la C5, avec 2 plateaux en bois et des rayons de bicyclette !!! Il n'y avait pas de dynamo, bien sûr... Mais les autodidactes de 1985 s'étaient à l'époque cassé la tête pour résoudre un problème crucial: les pales qui <<remontent>> le vent... et qui donc freinent le dispositif...
Bien plus tard, en 2011, j'ai visité le salon européen EWEC au Heysel à Bruxelles, et j'ai vu tous les stands des différents fabricants mondiaux des grandes éoliennes modernes = HAWT, qui ont finalement été choisies pour fournir de l'électricité verte on- et off-shore de par le monde... et elles ont commençé à fleurir partout... Cependant, j'avais cette année-là conçu dans mon jardin, à Hoeilaart, le <<CYCLOWATT MADE IN B>>(voir FB !!!), qui était tout simplement une VAWT, dont les pales étaient remplaçées par 8 vélos, qui tournaient à 18kmh, càd 12 RPM; et j'ai commandé une PMG (Permanent Magnet Generator) en Chine qui produisait 5KW à 200 RPM... C'était pas mal...je l'ai testée etexperimentée, et puis devant déménager, je l'ai expédiée au Burkina Faso, dans une école...
C'est finalement en Mars 2020, que je me réatelle à mon projet et je crée une nouvelle page FB et un dossier pédagogique revu et corrigé... Avec mes économies, je passe commande de 10 Cyclowatts (càd les chassis octogonaux), en Chine en Octobre, et je vais les réceptionner dans 3 semaines en Grèce... En ce qui concerne les PMG-basse vitesse, j'ai découvert la nouvelle génération made in China= AFPMG= Axial Flux PMG-48VDC-100RPM: càd, que le stator à disparu !!! Et par conséquent, le poids à considérablement diminué, mais pas vraiment le coût... EN FAIT, les Chinois se sont inspirés du moteur de lecture du
magnétoscope VHS, et puis du moteur du disque dur des anciens ordinateurs Tour , dont le rendement est excellent= 85% !!! Btw, le moteur du ventilateur de l'ordinateur est en fait celui-là même qui est devenu le moteur BLDC des vélos électriques !!! Tout simplement !!!
Voilà, je dois clotûrer maintenant ! Contactez-moi asap, si vous souhaitez acquérir à un prix ratiboisé un Cyclowatt made in B, qui fera certainement un tabac dans votre communauté !!!
Merçi d'avance , et à bientôt !!!
Nicolo
Bonjour, Quel est le poids total de l'éolienne en incluant la fondation, et l'emprise au sol si on utilise des câbles pour maintenir le mat ?
un article assez ancien 2012.
bonjour, vous parlez d'une limite à 10m/s .. celà veut dire qu'au dessus, l'éolienne arrête de fonctionner ? on ne voit pas celà décrit dans le tuto / vidéo .. merci
Je pense plutôt que cela veut dire qu'au delà sa puissance n'augmente plus ;)
Cela veut dire qu'au delà de 10 m/s, l'éolienne va trop vite, elle risque de s'endommager ou d'endommager le système électrique. Le safran va donc faire pivoter l'éolienne pour qu'elle se mette en drapeau c'est a dire se mettre perpendiculaire au vent et ralentir pour se protéger.
Bonjour, novice, je ne comprends par pourquoi à haute vitesse de rotation des ailes un frein électromagnétique (comme pour les camions) ne pourrait pas être mis en place ? Cela permettrait aux ailes de tourner moins vite par grand vent tout en produisant plus de puissance ?
Pour quoi le nombre de spire est 76 , quelle est l'inconvénient si je augmente a 120 tour par bobine, merci
Published
Vous avez entré un nom de page invalide, avec un ou plusieurs caractères suivants :
< > @ ~ : * € £ ` + = / \ | [ ] { } ; ? #
Bonjour, j'aurais aimé savoir quelle était la durée de vie de cette éolienne, combien de temps est-il possible que je m'en serve ? Merci !