Tutorial de Low-tech Lab | Categories : Energy
The hand-crafted 200W, 4 ft wingspan Piggott wind turbine.
The hand-crafted 200W, 4 ft wingspan Piggott wind turbine.
éolienne, piggott, horizontale, wind, turbine, aimant, permanent, Low-tech Tour France, énergie en fr 1
Retrouvez Ici la vidéo tutoriel
This tutorial is based on the work of Scotsman Hugh Piggott Hugh Piggott. It was directed with the help of Aurélie Guibert, a member of the Tripalium Network in Valence, France.
It is about building a windmill of maximum power of 200W in 12V for a wingspan of 1m 20. It is designed for low power requirements such as lighting an LED or charging of a laptop.
The distribution part of the electricity and the matting are not given in detail here.
The Wind
The power that the wind produces est proportional to the cube of its speed. For example, the windmill in this tutorial receives in its propeller 0.7W when the wind blows at 1m/s and a thousand times more at 10m/s.
To calculate it: P= 1/2 x Rho x S x v^3 with P: power (W), Rho: density of the air (about 1.23 kg/m 3), S: Surface swept by the propeller (m²), v: velocity of wind (m/s)
It is therefore necessary to study the land where we install the windmill to see if the wind blows relatively constant and with sufficient speed for producing minimum energy.
Like every other system, a part of energy is lost by the windmill. In theory, a windmill can never transform more than 60% of the energy that the wind provides, this is the Betz limit. In practice, with the type of windmill developed in this tutorial, the efficiency can reach up to 35%.
The location
Generally, it is better to have land free from trees and dwellings. The windmills of the same height placed in cities or on the gables of the houses produce much less energy because of the wind's turbulence. Similarly, the wind is more constant and powerful on an altitude, therefore it is preferred to install a small windmill at height than a big windmill at a low altitude.
Cost
Although it is a Low-tech, the cost of constructing this windmill is around 350€ if all the materials are bought. Including the matting and the electronics, the cost is around 2000€. It can be interesting to install it in off-grid areas with a view to autonomy. In the case of a network connection, it is not financially attractive.
Youtube
List of materials required for the propeller, refer to the chapters for details
List of materials required for the generator, refer to the chapters for details
List of materials required for the steel structure, refer to the chapters for details
List indicative of equipment, refer to the chapters for details
Note : The lower surface is the side of the blade which receives the wind, the upper surface is the back side of the blade.
Notes:
1) The wood should be imputrescible, light-weighted and easy to work with. For example, red cedar, Oregon pine, spruce, larch, douglas fir may be suitable.
2) For this tutorial, the section of the red cedar plank is 150mm x 45mm.
3) The parameter which determines the energy transmitted by the wind at the propeller is the length of the blade and not it’s breadth.
Notes:
1) Put the knots and defects of the wood at the end of the blade, so that the thinnest part does not become fragile (middle-end of the blade).
2) Select the leading edge ridge as neatly as possible. This ridge will not be altered during the cutting of the blade.
3) Extend the blade tip pattern by 4-5 cm to maintain a margin in case of damage.
Note: When using a circular saw for cutting, be careful to place the width of the blade always on the outside of the line.
Note: To guarantee good dimensions, the sculpture must come as close as possible to the pencil stroke without erasing it.
Note: The segment AB form an angle of 120° with the base of the blade, which will be later required for the assembly of the blades.
Note: In the case of this tutorial, the point B is situated on the perimeter of the circle. This is not always the case depending on the width of the plank.
Note: According to the thickness of the plank, it might appear that the thickness is not 17mm in section 3. Imagine a point in the space for the thickness 17mm on the rear edge on this section 3.
Note: To guarantee good dimensions, the sculpture must come as close as possible to the pencil stroke without erasing it.
Note: The 30% line corresponds to the final thickness of the blade, which is why we check the dimensions at this precise location.
Note: Be careful not to crack the rear edge as it is very delicate area.
Once the work on the 3 blades is completed:
Note: The angle should be slightly less than 120° in order to be able to rotate the blades slightly during assembly.
Note: To help the propeller to fit-in on the rest of the wind turbine, it is possible to enlarge the holes of 12mm in 14mm on the thickness of the triangle and the blades, without touching the diameter 12mm of the disc.
Note: For a precise hole, point the center with a pin, pre-drill with a drill of small diameter and then at 12mm. Choose a rotation speed adapted to material and diameter of drill. Lubricate well during drilling.
Fix the two part temporarily with a few soldering points. Make the 4 drills across the base of the spindle and the cradle.
Note: If the 4 initial screws of the spindle are in good condition, they can be recovered by drilling only the cradle and screwing directly into the base. In this case, care should be taken that the original threading should not get damaged (which is a mechanical threading and cannot be used with other screws). It is sometimes necessary to shorten these screws so as to avoid problems during assembly.
Note: The stator is the fixed part of the generator.
Notes:
1) If a clamp is used to maintain the threaded rod while cutting, wrap the threaded rod in a cloth at the jaws before tightening, to avoid damage to the screw pitch.
2) Before cutting the rod, screw a nut on the part of the rod that will be cut in order to reform the pitch of the screw at the level where it is been cut through the repeating passage of the nut.
Notes: The coils will be wound between the 2 discs of the plywood (thickness minimum 15mm), which are known as "ears". The small plywood rectangle between the two ears is the spacer: which determines the thickness of the coil. The inner shape of the coil is determined by the outer edges of the 4 large nails, this forms a rectangle of 46mm x 30mm. This rectangle corresponds to the dimensions of the magnets that will pass in front.
Notes: For the easy slippage of the wire, you can bevel the inner edges of the ears. Make markings with a marker on the edge of both ears to count the turns more easily.
Notes: The stator is composed of 6 coils made with 76 rounds of 1.4mm diameter enameled copper wire. This allows the generator to produce maximum 200W in 12V without damaging the wires. In order to make 6 coils, 1.5kg of copper wire is required.
Notes: It is important that all coils are positioned with the coils turning in the same direction, either clockwise or anti-clockwise. If this instruction is not respected, the generator will not function as expected.
2) Connect the output of 1 to the input of 4.
3) Connect the output of 2 to the input of 5.
4) Connect the output of 3 to the input of 6.
Il se décompose en 4 parties: le socle, la bordure, l'îlot central et le couvercle. Bien penser à percer 3 détrompeurs pour le bon alignement du couvercle au moulage.
Remarque: Cette étape fait intervenir des éléments dangereux (résines, fibres, etc) Porter des gants latex et lunettes de protection jusqu'à la fin du moulage.
Remarque: le talc permet non seulement de charger la résine avec un matériau peu cher mais également de diffuser la chaleur lors du séchage de la résine et durant le fonctionnement futur de l'éolienne afin de ne pas endommager le stator.
propeller
Remarques:
1) Il est impératif que le disque soit en acier pour qu'il puisse conduire les champs magnétiques. Cela ne fonctionnera pas avec de l'alu ou de l'inox par exemple.
2) Il peut être plus facile de se fournir le disque tout préparé auprès d'artisans qui disposent d'outils de découpe précise (plasma, laser).
Remarque: Cette étape consiste à coller des aimants très puissants sur le disque en acier en alternant les pôles des aimants. Si l'alternance n'est pas respectée, la génératrice ne fonctionnera pas et risque des dommages.
Remarque: Faire très attention durant la manipulation de ces aimants. Etant très puissants, ils peuvent endommager les appareils électroniques, attirer des objets métalliques en tout genre et pincer très fort. Ils sont également fragiles et peuvent se casser durant les chocs.
1) S'il y a répulsion, le coller dans l'encoche adjacente en conservant bien ce sens: les 2 aimants ont les polarités positionnées de manière opposée.
2) S'il y a attraction, le retourner dans sa main, vérifier qu'il y a maintenant répulsion, et le coller dans l'encoche adjacente.
Remarque: Cette étape fait intervenir des éléments dangereux (résines, fibres, etc) Porter des gants latex et lunettes de protection jusqu'à la fin du moulage.
1) Une cornière de 206mm (50x50x6mm).
2) Un tube diamètre ext 42,2mm, longueur 100mm: Pivot éolienne.
3) Un tube diamètre ext 33,4mm, longueur 150mm: Pivot Safran.
4) Le berceau précédemment réalisé.
Remarque: La chaleur dégagée par la soudure peut avoir tendance à faire travailler le métal, déformer les pièces et les positions choisies. Pour éviter ce problème, réaliser quelques points de soudure à quelques endroits stratégiques sur le périmètre de la soudure puis tirer le cordon soudure.
1) Un tube diamètre ext 42,2mm, longueur 130mm: Pivot safran.
2) Un fer plat 50 x 50 x 6mm: Couvercle du pivot safran.
3) Un tube diamètre ext 33,4mm, longueur 700mm: Queue du safran.
4) Une cornière 30 x 30 x 5, longueur 250mm: Support safran.
5) Un contreplaqué taillé selon les envies de chacun, d'épaisseur 6mm et de 0,1m² de surface. (par exemple un triangle rectangle de hauteur 300mm et base 600mm): le Safran.
propeller
Remarque: Afin de pouvoir chargé une batterie 12V, il est d'abord nécessaire de transformer le courant alternatif produit par chaque phase en un courant continu.
Remarque: Il sera nécessaire d'installer un contrôleur de charge entre l'éolienne et la batterie.
Vous pouvez télécharger une fiche pédagogique créée par le Low-tech Lab dans la partie "Fichiers" du tutoriel (onglet au niveau de la section "Outils-Matériaux").
Published
You entered an invalid page name, with one or many of the following characters :
< > @ ~ : * € £ ` + = / \ | [ ] { } ; ? #