Fonctionnement, entretien et régénération de batteries au plomb

Tutorial de avatarScholar Grid Project | Catégories : Habitat, Énergie

Les batteries sont des éléments centraux et chers dans les installations autonomes. Pourtant, leur fonctionnement et leur entretien sont très mal connus par le grand public. Ce tutoriel a donc plusieurs objectifs :

  • Présenter le fonctionnement d'une batterie au plomb.
  • Présenter les différents types de batteries au plomb
  • Présenter les causes majeures de dégradation des batteries au plomb.
  • Présenter les règles d'utilisations et d'entretien des batteries au plomb.
  • Introduire le procédé de désulfatation (ou régénération) des batteries au plomb.

Licence : Attribution (CC BY)

Introduction

Les batteries sont souvent les constituants les plus chers et les plus fragiles d’un système électrique de conversion. Aussi, il est important d’en prendre soin par une bonne utilisation et une bonne surveillance !


Les batteries au Plomb Acide sont très fragiles. Elles sont sensibles aux surcharges, aux charges partielles, aux décharges profondes, aux charges trop rapides et aux températures au-dessus 20°C. Tous ces facteurs de vieillissement prématuré, adviennent facilement et peuvent se combiner, ceci étant dû au manque de connaissance technique, à des systèmes mal dimensionnés ou à une utilisation erronée de la part de l’utilisateur. Si vous ne maîtrisez pas ces facteurs, les batteries seront rapidement endommagées.


Ces dommages amèneront à une durée de vie des batteries et à une disponibilité moindre et dans certains cas, une détérioration irrémédiable des batteries peut survenir. Les batteries dureront plus longtemps en les utilisant selon les règles de l’art, et donc leur remplacement sera moins fréquent. A long terme, vous ferez de sérieuses économies. Un autre intérêt est que le système de conversion sera bien plus performant si les batteries sont en bon état. Plus les batteries seront en bon état et plus l’installation sera performante !


Dans ce tuto, nous apprendrons à bien utiliser et entretenir des batteries Plomb-Acide.

Étape 1 - Constitution d'une batterie au plomb

  • Une batterie au plomb est constituée par un ensemble d'accumulateurs. La tension nominale d'un accumulateur étant d'environ 2.1 V, une batterie de 12 V est constituée de 6 accumulateurs montés en série et reliés par des connexions en plomb soudées. Ces accumulateurs sont logés dans un bac en plastique, fermé par un couvercle scellé.
  • Chaque accumulateur est composé d'un ensemble de couples d'électrodes positives et négatives montés en parallèle. Au milieu de chaque couple est placé un séparateur.
  • Des séparateurs sont généralement des feuilles rectangulaires, intercalées entre les plaques positives et les plaques négatives, et possèdent des qualités remarquables:
    • isolant électrique parfait
    • très grande perméabilité aux ions porteurs de charges électriques
    • excellente tenue à l'acide sulfurique
  • Les électrodes sont composées d'une grille sur laquelle est déposée une matière active poreuse: du plomb (Pb) sur l'électrode négative et du dioxyde de plomb (PbO2) sur l'électrode positive. La grille collecte le courant et sert aussi de support mécanique de la matière active.
  • L'électrolyte est une solution diluée d'acide sulfurique dans laquelle baigne les électrodes. Il peut être sous forme liquide, de gel ou absorbée dans des feutres en fibre de verre en fonction du type de batterie.



Étape 2 - Fonctionnement d'une batterie au plomb

Pour comprendre les causes de défaillance d'une batterie, il est important de bien comprendre les réactions chimiques à l’œuvre à l'intérieur de celle-ci.


  • A la décharge: Lors de la décharge, il se passe la réaction chimique suivante:

PbO2 sol + Pb sol + 2 HSO4aq + 2 H+aq ⟶ 2 PbSO4 sol + 2 H2O liq

    • L'électrode positive (+) qui était du dioxyde de plomb va devenir du sulfate de plomb, sous forme de cristaux.
    • L'électrode négative (-) qui était en plomb va aussi devenir du sulfate de plomb, sous forme de cristaux.
    • Le bain dans lequel baigne tout ça (l'électrolyte) se transforme en grande partie en eau (H2O).


  • A la charge : Lors de la charge, on force la réaction chimique inverse :

2PbSO4 sol + 2 H2O liqPb sol + PbO2 sol + 2 HSO4aq + 2 H+aq.


    • Les cristaux de sulfate de plomb se redissolvent. On retrouve une électrode (+) en dioxyde plomb et une électrode (-) en plomb.
    • L'électrolyte redevient de l'acide sulfurique dilué.





Étape 3 - Les unités caractéristiques des batteries

Les caractéristiques des batteries sont indiquées d'une manière abrégée et il n'est pas toujours facile de bien les déchiffrer. Voici un tableau récapitulatif des unités associées aux batteries :

Caractéristique Définition Explication
Capacité (Ah) Quantité de courant que peut stocker ou restituer une batterie 
généralement spécifiée en Ah pour un régime de décharge donné Une batterie de 10 Ah : peut débiter 5 A pendant 2 heures
Tension (V) Niveau de tension de la batterie. Doit être compatible avec les organes connectées Les batteries au plomb sont constituées d'éléments délivrant chacun une tension de 2,1 V. Le montage en série de ces éléments permet d'atteindre les voltages usuels souhaités, en général 12 V, soient 6 éléments. Pour réaliser des systèmes en 24 ou 48 V, on monte des batteries 12 V en série.
Puissance (Wh) Résulte de la multiplication de la capacité de la tension Une batterie de 200Ah en 24V aura une puissance de 4800Wh
Régime de décharge, Cxx Exprimée en C10, C20 ou C100, elle indique la capacité d'une batterie en fonction de sa vitesse de décharge. Batterie 50Ah C20 (signifie une capacité de 50Ah avec une décharge en 20h)

Batterie C100 : 90Ah (capacité de 90Ah avec une décharge en 100h)

Cold Cracks Amps (CCA) Il s'agit de l'intensité maximale extractible d'une batterie sur une courte période en situation de démarrage de moteur par exemple. L'indication CCA 420A 5 sec signifie que la batterie peut délivrer 420A pendant 5 sec
SOC (State of Charge) état de charge d’une batterie, quantité d’électricité restante, SOC = 50 % : le réservoir est à moitié plein
DOD (Depth of Discharge) Etat de décharge d’une batterie, quantité d’électricité consommée DOD + SOC = 100%
Nombre de cycles Pour une batterie, un cycle représente une décharge suivie d'une charge. Mais attention, le nombre de cycles d'une batterie est fonction de la profondeur de la décharge subie. Une même batterie peut avoir:
  • 500 cycles à 80% de DOD
  • 750 cycles à 50% de DOD
  • 1800 cycles à 30% de DOD


Étape 4 - Différents types de batteries pour différents usages

Il existe plusieurs types et plusieurs technologies de batteries au plomb. Chacune est adaptée à un usage, un environnement et des contraintes particulières. Comprendre ces différences est essentiel pour choisir et entretenir correctement sa batterie. Cette partie résume les grandes familles de batteries plomb et leurs caractéristiques.


Ne jamais mélanger des batteries de différents types.

Les combinaisons suivantes sont à proscrire :

  • Vieilles et nouvelles batteries
  • Différentes capacités
  • Différents types de batterie
  • Différentes marques
  • Différentes technologies ou chimie

Les batteries en fonction de leur usage :

  • Batterie de démarrage:

Une batterie de démarrage est destinée à fournir un courant élevé pendant une très courte période. Elle est conçue pour démarrer un moteur (par exemple un véhicule ou un groupe électrogène). Les batteries de démarrage sont parfois appelées “batterie de voiture”, “batterie de camion” ou “batterie à plaques minces”. Voir l'intérieur d'une batterie de démarrage.

Les batteries de démarrage ne sont pas faites pour un usage cyclique. Elles sont étudiées uniquement pour des forts courants de décharge de très courte durée. Ainsi, elles ne peuvent pas être utilisées dans un système de conversion électrique / installation photovoltaïque. Même s'il est tentant de les utiliser car disponibles facilement à bas coût, cela causera des dysfonctionnements au final.
  • Batterie de traction

Le nom de ces batteries vient de leur première utilisation : l’alimentation du moteur de véhicules électriques comme les chariots élévateurs. Elles sont conçues pour se recharger rapidement et résister à des décharges assez profondes. Elles sont bien adaptées pour une utilisation en solaire photovoltaïque.

  • Batterie stationnaire

Ces batteries sont celles utilisées dans les alimentations de secours notamment pour des systèmes informatiques ou de télécommunication. Elles sont conçues pour être rechargées en permanence et n’être déchargées que rarement, elle ne sont donc prévues que pour un nombre réduit de cycles.

  • Batterie solaire / à décharge lente

Ces batteries sont prévues pour être utilisées dans des installations solaires photovoltaïques. Elles sont conçues pour supporter un nombre élevé de cycle (puisqu’elles seront déchargées toutes les nuits et rechargées tous les matins), leur profondeur de décharge est généralement bonne mais peut varier fortement d’un modèle à l’autre. Les batteries de servitudes présentent à peu près les mêmes caractéristiques que les batteries solaires.
Voir l'intérieur d'une batterie à décharge lente / solaire


Les batteries en fonction de leur technologie / électrolyte

  • Batterie ouverte

Une batterie ouverte est une batterie à électrolyte liquide dotée de bouchons permettant de la remplir. Les batteries ouvertes ne sont pas étanches : le liquide qui est à l'intérieur s'évapore peu à peu, il faut donc contrôler régulièrement son niveau et compléter si nécessaire avec de l'eau distillée.


Avantages Inconvénients
Réparable Entretien nécessaire
Permet les courants forts à froid (CCA) Risque de non homogénéité de l'électrolyte si peu utilisé = vieillissement prématuré
Supporte les surcharges et les surchauffes (on peut remettre du liquide si celui-ci s'évapore) Dégagement d'hydrogène, donc risque d'explotion si milieu non aéré
Prix faible N'aime pas le froid, risque de gèle de l'électrolyte.
Forte autodécharge (10-12% par mois) si pas utilisé régulièrement.
Fuites possibles si basculée


  • Batterie liquide scellée / étanche

Une batterie étanche est une batterie à électrolyte liquide dotée d'un système permettant d’empêcher l'évaporation, par recombinaison des gaz. Ces batteries ne nécessitent pas de maintenance. Ces batteries sont souvent appelées VRLA pour Valve Regulated Lead-Acid.


Avantages Inconvénients
Réduit la production de gaz explosif, les pertes en eau et les fuites Ne permet plus l'entretien, ni le contrôle
Nécessite moins de maintenance Impose une charge parfaitement régulée en fonction de la température pour éviter les pertes de gaz par surpression


  • Batterie AGM

Les batteries AGM sont un type de batterie étanche / VRLA. Dans une batterie AGM, l'électrolyte est liquide mais maintenu en place dans un buvard en fibre de verre, d'où son nom: Absorbed Glass Material.
Voir l'intérieur d'une batterie AGM

Avantages Inconvénients
Sans entretien avec un faible dégagement gazeux Ne supporte pas la chaleur (perte de l'électrolyte sous forme de gaz - effet définitif)
Bon maintient de l'homogénéité de l'électrolyte Ne supporte pas les surcharges (perte de l'électrolyte sous forme de gaz - effet définitif)
Supporte bien le froid car électrolyte homogène Durée de vie limitée (taux d'acidité obligatoirement élevé)
Permet de faire passer des courants de crête forts (CCA)
Résiste bien aux chocs car tout est bien maintenu à l'intérieur
Faible autodécharge (1-3% par mois)
  • Batterie gel

Les batteries gel sont un type de batterie étanche / VRLA. Dans une batterie gel, l'électrolyte est gélifié par ajout de silicate.
Voir l'intérieur d'une batterie gel

Avantages Inconvénients
Parfait maintien de l'homogénéité de l'electrolyte Courant de crête limité
Faible autodécharge (1-3% par mois) Charge et décharge lente (courant de charge limité à 5-10% de la capacité)
Résiste bien aux chocs car tout est bien maintenu à l'intérieur Ne supporte pas la chaleur (perte de l'électrolyte sous forme de gaz - effet définitif)
Bonne durée de vie Ne supporte pas les surcharges (perte de l'électrolyte sous forme de gaz - effet définitif)
Prix élevé




Étape 5 - Mécanismes de dégradation des batteries au plomb

  • Stratification de l'électrolyte: Dans une batterie à électrolyte liquide, si l'électrolyte n'est pas agité, l'acide sulfurique va couler vers le bas des bacs. Ainsi, la densité de l'électrolyte va lentement augmenter en bas des batteries, tandis qu'elle va diminuer en haut des batteries. Cette stratification de l'acide va provoquer une inhomogénité de la décharge des électrodes avec une corrosion accélérée en pied de batterie.
Comment l'éviter ?
  • Utiliser régulièrement ses batteries. L'électrolyse de l'eau créé naturellement des bulles d'oxygène qui agite l'électrolyte.
  • Effectuer périodiquement une charge d'égalisation: Elle consiste à charger les batteries avec un faible courant, mais sous une tension supérieure à la tension généralement appliquée pour créer un bouillonnement plus important.
  • Utiliser des batteries GEL ou AGM


  • Corrosion des électrodes positives: Les électrodes positives sont sensibles à la corrosion qui se produit au repos, mais surtout lors de la charge : le plomb de la grille se transforme en oxyde de plomb, peu conducteur. Si la corrosion devient trop importante, les matériaux actifs tombent peu à peu au fond des accumulateurs, et l'ensemble des électrodes se désagrège. La capacité de la batterie diminue et la résistance interne augmente jusqu'à rendre la batterie inutilisable.
Comment la limiter ?
  • Éviter les surcharges: vérifier sur les fiches techniques que les courants et durées de charges ne sont pas trop importants
  • Éviter les températures élevées: aérer ou isoler le local batterie, laisser un espace entre chaque batterie.

  • Perte de la matière active: Durant des cycles de charge et de décharge, les plaques positives et négatives subissent de fortes contraintes mécaniques (forts courants, champs magnétiques induits). Les plaques se désagrègent peu à peu et la matière active s’accumule au fond de la batterie. Cette "boue" peut provoquer des courts circuits entre deux plaques.
Comment la limiter ?
  • Éviter les décharges profondes
  • Éviter les décharges rapides: Si la batterie est déchargée très rapidement, les contraintes mécaniques n'ont pas le temps de s'accommoder et la désagrégation est plus rapide.
  • Choisir des batteries à électrodes épaisses ou tubulaires.
  • Asséchement de l'électrolyte: Dans une batterie étanche VRLA, en fin de charge, l'augmentation de la tension provoque l'électrolyse de l'eau présente dans l'électrolyte (formation d'oxygène et d'hydrogène). En fonctionnement normal, ces gaz sont recombinés sous forme d'eau à l'intérieur de la batterie. En cas de surcharge, la pression interne des gaz augmente jusqu'à permettre l'ouverture de la soupape : de l'eau s'échappe de manière définitive.
Comment l'éviter ?
  • Éviter les surcharges: vérifier sur les fiches techniques que les courants et durées de charges ne sont pas trop importants
  • Éviter les températures élevées: aérer ou isoler le local batterie, laisser un espace entre chaque batterie.
  • Sulfatation: Durant la décharge, des cristaux de sulfate de plomb (PbSO4) se forment sur les électrodes positives et négatives. Si la batterie reste longtemps déchargée, ces cristaux de sulfate de plomb grossissent et durcissent de manière irréversible. Cela réduit la conductivité des électrodes, fait perdre en capacité à la batterie et peut provoquer des courts-circuits.
Comment la limiter ?
  • Éviter les sous-charges prolongée: ne jamais stocker une batterie déchargée
  • Éviter les charges incomplètes: charger vos batteries à 100% au moins 1x/semaine.





Commentaires

Draft