Affichage de 20 pages utilisant cette propriété.
Cet appât pour abeilles Melipona a été documenté dans le cadre d'un voyage de recherche de low-tech en Amérique du Sud de juin à septembre 2017 en Equateur, au Pérou et en Bolivie.
Il ne faut pas s’y méprendre, cette low-tech n’a pas pour objectif de tuer des abeilles mais bien de les attirer pour que ces dernières créent une colonie et au final… du miel !
C’est Pablo, un apiculteur équatorien qui utilise cette technique. Selon lui, le système est adaptable pour toutes les espèces d’abeilles mais il n’a été testé que sur l’espèce des abeilles Melipona. Ce sont de petites abeilles qui ne piquent pas, elles se trouvent au Mexique, en Amérique Centrale et en Amérique du Sud. Pablo travaille dans la ferme Finca Fina située près de Malacatos dans le sud de l'Equateur et s’occupe aussi bien des animaux que des abeilles, mais sa spécialité, c’est les abeilles !
Ces abeilles sont des micro-pollinisateurs, elles permettent aux plantes de se reproduire et de se développer parfois à plusieurs kilomètres de distance. Elles sont en grand déclin partout dans le monde à cause de l’utilisation de pesticide, notamment des fameux néonicotinoïdes. Développer cette technique pour créer de nouvelles ruches a donc 2 effets : soutenir le développement économique en produisant plus de miel et développer la population d’abeilles dans les alentours.
Pour fabriquer cet appât il est nécessaire d’avoir à sa disposition une ruche de l’espèce visée. En effet, il sera nécessaire d’utilise de la propolis. C’est un mélange de cire et de résine végétale que les abeilles récupèrent dans la nature, il est de couleur brun verdâtre et se trouve dans la ruche.
+Cet appât pour abeilles Melipona a été documenté dans le cadre d'un voyage de recherche de low-tech en Amérique du Sud de juin à septembre 2017 en Equateur, au Pérou et en Bolivie.
Il ne faut pas s’y méprendre, cette low-tech n’a pas pour objectif de tuer des abeilles mais bien de les attirer pour que ces dernières créent une colonie et au final… du miel !
C’est Pablo, un apiculteur équatorien qui utilise cette technique. Selon lui, le système est adaptable pour toutes les espèces d’abeilles mais il n’a été testé que sur l’espèce des abeilles Melipona. Ce sont de petites abeilles qui ne piquent pas, elles se trouvent au Mexique, en Amérique Centrale et en Amérique du Sud. Pablo travaille dans la ferme Finca Fina située près de Malacatos dans le sud de l'Equateur et s’occupe aussi bien des animaux que des abeilles, mais sa spécialité, c’est les abeilles !
Ces abeilles sont des micro-pollinisateurs, elles permettent aux plantes de se reproduire et de se développer parfois à plusieurs kilomètres de distance. Elles sont en grand déclin partout dans le monde à cause de l’utilisation de pesticide, notamment des fameux néonicotinoïdes. Développer cette technique pour créer de nouvelles ruches a donc 2 effets : soutenir le développement économique en produisant plus de miel et développer la population d’abeilles dans les alentours.
Pour fabriquer cet appât il est nécessaire d’avoir à sa disposition une ruche de l’espèce visée. En effet, il sera nécessaire d’utilise de la propolis. C’est un mélange de cire et de résine végétale que les abeilles récupèrent dans la nature, il est de couleur brun verdâtre et se trouve dans la ruche.
+A concepção desse aquecedor solar foi fortemente inspirada por Guy Isabel, nos planos que descreve em seu livro. [https://www.eyrolles.com/BTP/Livre/les-capteurs-solaires-a-air-9782212140170 Os captadores solares à ar], edição Eyrolles.
O sol transmite energia na terra por radiação. No Equador a radiação alcança a energia de 1000W/m², por comparação a energia de um pequeno aquecedor elétrico.
A energia solar é uma energia gratuita intermitente, que é relativamente simples de transformar efitivamente em forma de calor (facilmente com redimento superior à 60%).
[http://www.ptaff.ca/soleil Esse site] lhe permite conhecer em função da estação do ano e da posição geográfica, de ínumeros parâmetros tais que a força máxima por m², o ângulo do sol em relação ao lugar.
[http://re.jrc.ec.europa.eu/pvg_tools/fr/tools.html ] Esse outro site permite de calcular os valores quase por toda a terra, levando em conta a linha do horizonte, da orientação dos paíneis e outros parâmetros. Os valores mostrados por padrão correspondem à energia fotovotaíca geral, mas é possível mostrar a radiação em kwh/m2.
<div class="mw-translate-fuzzy">
"'O sensor de ar'"
</div>
Concretamente se trata de transformar a radiação solar em calor graças ao que chamamos um corpo negro [https://fr.wikipedia.org/wiki/Corps_noir] (por exemplo o asfalto muito quente no verão ou ainda o painel de um carro estacionado no sol).
Para as casas, os sistemas mais comuns dentro desse princípio são os aquecedores solares de água, frequentemente instalados nas encostas dos telhados para fazer água quente de uso doméstico como complemento dos sistemas tradicionais.
Menos conhecido, o sensor de ar permite esquentar o ar de um cômodo.
Esse tutorial mostra a fabricação de um sensor de ar de 2m² dimensionado para o aquecimento de um cômodo de 10 a 15m² de 5 a 7°C no inverno em média, para a França. É um complemento ao sistema de aquecimento clássico, que permite economias financeiras e ecológicas significativas. Um custo de cerca de 200€, é rapidamente abatido.
"'Princípio'"
No inverno, o sensor aspira o ar da residência por baixo, aquece-o graças ao sol fraco, e o restitui pela saída ao alto, a uma temperatura que pode atingir 70°C localmente (instantaneamente diminuído dentro da atmosfera do ambiente).
<div class="mw-translate-fuzzy">
No verão, uma escotilha exterior permite de rejeitar o ar quente do sensor para fora aspirando ao mesmo tempo o ar da residência, criando assim uma ventilação natural.
</div>
Uma válvula ligada a um pistão termostático, permite de gerar automáticamente e sem eletridade, a abertura da circulação do ar, somente quando essa atinge mais de 25°C dentro do sensor.
"'Encontrar em [https://lowtechlab.org/assets/files/rapport-experimentation-habitat-low-tech-low-tech-lab.pdf este relatório] uma análise da utilização deste aquecimento solar, bem como dos 11 outros de baixa tecnologia experimentados durante o projecto En Quête d'un Habitat Durable.'"'.
On the outskirts of Antananarivo, capital of Madagascar, the Andralanitra landfill covers some 20 hectares and receives between 350 and 550 tons of waste every day. More than 3000 ragpickers work there daily, sorting, recovering and recycling waste. Among them, two inhabitants of the neighbouring district, Chris and Aimé, launched a few years ago the production of a "Gasy" soap (made in Madagascar) based on organic waste recovered from the landfill and animal fat. They have created a small business around the sale of their soap, and after a few years of activity they produce and sell nearly 3000 a week. They have even exported their activity into the bush, where hygiene problems and access to this type of product are very difficult.
Their business is quite successful and has advantages that can't be ignored: with 1kg of animal fat, bought for 1200 Ariary (0.33€), they produce around 30 soaps which they sell for 200 Ariary apiece. The plant matter used in the making of the soap as well as the fuel used for the preparation heating are salvaged from the waste, which does not yield any extra cost.
This tutorial details the making of Gasy soap according to Chris and Aimé's method.
It is obvious that this kind of remedy contrasts with European hygiene standards, but as stated above, certain disadvantaged areas of Madagascar do not have any access to cleanliness. What's more, Chris and Aimé remind us by this that it is very easy to make your own soap using these traditional methods, with results as good as commercial soap.
+Ah laundry detergent, those famous adverts and the very smelly detergent dispenser! It can sometimes be a headache to find the detergent that's right for you (suitable for your clothes/sensitive skin, perfumed but not too much, with ingredients that aren't too allergenic or bad for the environment...). The problem is that the ingredients listed on detergents and cleaning products are very limited: you'll often find "contains ionic and anionic agents", but it's hard to find anything more vague than that! Especially as commercial detergents are often expensive, and organic or ecological detergents are no more transparent about their composition (even if some claim to contain 100% natural or plant-based detergents). In any case, buying commercial detergents means producing a lot of waste, especially if you use plastic bottles, tablets or cans. In this tutorial, I'll show you a quick, easy and economical way to make your own 100% biodegradable washing powder!
<u>'''Advantages'''</u>: Single-ingredient, can be made without heating, natural fertiliser, no odour and doesn't obstruct drains, free because you can use a "waste product" from wood fires. Unlimited conservation thanks to the basic pH.
<div class="icon-instructions idea-icon">
<div class="icon-instructions-icon"><i class="fa fa-lightbulb-o"></i></div>
<div class="icon-instructions-text">Detergent can also be used as a floor and dish cleaner, and the filtered ash can be used as a fertiliser and cleaner (multi-purpose scouring paste)</div>
</div>.
<u>'''Disadvantages'''</u>: not suitable for delicate laundry, tends to make white laundry dull in the long term (can be made up with percarbonate), for the garden be careful because pH basic.
The large majority of detergents used are based on products containing sodium as the active agent, which once released into the environment is not only alkalinising (increases the pH) but also salinising in the long term. One of the great advantages of ash detergents is that the active ingredient is potash (the ionic form of potassium, the K in the famous N-P-K tryptic of agricultural fertilisation). Even if the discharge from your washing water continues to be alkalinising, it will fertilise your environment with an element that is often forgotten by gardeners and is harder to provide than nitrogen !
<u>How does it work ?</u> After stirring, the liquid is loaded with potassium salts. In the washing machine, when it comes into contact with the grease on the dirty clothes, this potash is transformed into soap. Basically, the more grease there is, the better it washes !
<div class="icon-instructions caution-icon">
<div class="icon-instructions-icon"><i class="fa fa-exclamation-triangle"></i></div>
<div class="icon-instructions-text">Be careful, as mentioned above, this detergent reacts strongly to greases, INCLUDING SKIN SEBUM. It is therefore important to wear gloves when filtering, otherwise your skin will become irritated and very dry !</div>
</div><br/>
<div class="icon-instructions caution-icon">
<div class="icon-instructions-icon"><i class="fa fa-exclamation-triangle"></i></div>
<div class="icon-instructions-text">Ce prototypage n'a pas été mené à son terme et représente donc une base solide sur laquelle s'appuyer</div>
</div>
L'objectif de ce projet étudiant était d'aboutir à une assistance électrique pour vélo dans une démarche Low-tech; en cherchant à maximiser la récupération de matériau, à rester dans le cadre légal d'une assistance se déclenchant au pédalage et inférieure à 250W, à ne pas dépasser les 100€, et à permettre un trajet moyen de vélo-taf du quotidien.
+A partir d'un cas d'étude simple, l'atelier vise à '''réinvestir la démarche low-tech dans un projet d'entreprise''', à travers la co-construction d'un projet d'activité entrepreneuriale low-tech.
L'atelier très court '''(2h00)''' peut réunir une quinzaine de personnes aux profils très variés, et l'objectif n'est donc pas de creuser l'entrepreneuriat low-tech d'une manière qui se voudrait exhaustive. Au contraire, le cas proposé est plutôt destiné à '''alimenter des échanges autour de ce que pourrait être concrètement une activité entrepreneuriale low-tech''' : quelles représentations, quels leviers, quels freins ?
'''Déroulement de l'atelier :'''
Une fiche récapitule ces informations pour les participants.
#Construction en groupes d'un modèle d'activité entrepreneuriale low-tech de boulangerie
#Lecture et commentaire du projet co-construit
#Lecture et commentaire d'un exemple concret (réel)
#Echanges, débats, limites, leviers et freins...
<br/>
<div class="icon-instructions info-icon">
<div class="icon-instructions-icon"><i class="fa fa-info-circle"></i></div>
<div class="icon-instructions-text">Toutes les illustrations sont disponibles dans un format parfaitement lisible dans la rubrique « Fichiers ».</div>
</div>
+Cet atelier est le premier d’une série qui s’incrit dans le cadre du projet FIL ROUGE des étudiants du Semestre PISTE (Ense3) en collaboration avec le Low Tech Lab Grenoble et la maison des familles de St Bruno. Cette série d’atelier a pour but de co construire avec les mamans de la maison des familles des cuiseurs solaires de type Barbecue dans une démarche d’échange et de partage. Ce premier atelier vise à orienter une réflexion sur l’énergie dans l’habitat, et une présentation de l’énergie solaire et de son potentiel. Cet atelier est dimensionné pour une quinzaine de personne, pour une heure.
L’atelier se déroule en 4 temps, tout d’abord un temps d’échange en petit groupe sur l’énergie dans la maison basé autour le jeu de cartes Revolt, ensuite un temps d’explication et d’expériences sur l’énergie solaire. Le troisième temps se base sur la présentation de deux maquettes, l’une pour parler d’énergie électrique et l’autre d’énergie thermique. Le dernier temps est un temps de déambulation et d’échanges autour de Low Tech Solaires.
+Dans le cadre de l’expérimentation ''[https://lowtechlab.org/fr/le-low-tech-lab/les-actions/territoire-low-tech Vers un territoire low-tech]'', vingt structures de Concarneau Cornouaille agglomération ont rejoint un projet qui place la low-tech au cœur d’une ambition de mutation écologique et solidaire communément partagée entre les secteurs privés et publics. Annoncé juin 2022 par Le Low-tech Lab, l’Ademe, la Région Bretagne et Concarneau Cornouaille Agglomération, initiateurs et acteurs, l’expérimentation a pour but de permettre à chaque structure, publique ou privée, associative ou à but lucratif, d’expérimenter collectivement la démarche low-tech.
Deux structures se sont souhaitées expérimenter autour des enjeux pédagogiques et éducatifs : le Konk Ar Lab (KAL), fablab de Concarneau, et l’association d’éducation populaire de l’école diwan de Trégunc (AEP diwan).
Les objectifs pour ces structures étaient de se former, développer et (apprendre à) animer des ateliers pédagogiques permettant :
* de sensibiliser les jeunes à la démarche low-tech
* et de s’approprier collectivement la démarche low-tech pour l’appliquer sur l’école (ou un lieu connu des jeunes) dans son ensemble : bâti, équipements, organisations, activités, etc.
Des ateliers ont été animés à l’école de Trégunc, notamment avec une animatrice du Konk Ar Lab, qui a pu apporter sa connaissance d’animation d’ateliers pédagogiques. Les ateliers ont été co-construits avec une parent d’élève de l’école, membre de l’AEP, une membre du KAL, avec l’aide et l’inspiration de contenus existants créés par Explore et le Low-tech Lab.
Ce document est à destination à destination des encadrant·es de jeunes ou de publics scolaires :
* la première partie donne des références pour s’auto-former à la démarche low-tech, à destination des animateur·rices : éléments de référence, contenus documentaires, supports de vulgarisation technique et scientifique, etc.
* des fiches décrivent ensuite les différents ateliers pédagogiques réalisés : acculturation à la low-tech pour les jeunes, appropriation de la démarche par les enfants et application sur leur propre environnement scolaire (“mon école low-tech du futur” : cour de récré, cantine, salle de classe, sanitaire, salle de repos, etc.), production de cartes ou de maquettes, etc.
* Dans ses fiches se trouvent des liens vers les tutoriels de fabrication des différentes fournitures auto- produites : peintures et colles naturelles et DIY.
Cette trame proposée a été testée et va être de nouveau testée dans le cadre du projet ''Vers un territoire low-tech''. Elle est partagée pour partager ce qui a été fait, inspiré et donner des idées. Elle a vocation à être éprouvée, challengée, améliorée au fil des utilisations !
Dans le désert d'Atacama, au Nord du Chili, se trouvent des "oasis de nuages". Dans ces oasis, la présence de nuages a permis la naissance de tout un écosystème ! Lorsqu’il n'y a pas une goutte d'eau dans le sol, les végétaux réussissent à capter les particules d'eau en suspension dans l'air pour vivre en plein milieu du désert.
Et si nous nous inspirions de ces plantes et récupérions nous aussi l'eau transportée par les nuages ? C'est ce que font les "Attrape Nuages" ou encore “Filets à Nuages” : la maille du filet capture les particules d'eau ; les gouttes coulent le long de la maille, sont récoltées par une gouttière puis acheminées et stockées dans un tank.
En 1998, à Alto Pataches, près d’Iquique, dans le désert d'Atacama, un centre de recherche a été mis en place par l'Université Pontificia Universidad Católica de Chile et l'ONG Canadienne FogQuest. Il sert de centre d'investigation pour les professeurs et étudiants, mais également de centre d'éducation et de sensibilisation ouvert au public.
Ce centre d'investigation est isolé du réseau d'eau et d'électricité. Les filets à nuages produisent l'eau nécessaire au fonctionnement du centre, alimenté en énergie grâce à des panneaux solaires. Ici, un mètre carré de filet fournit en moyenne annuelle 8L d'eau par jour. Le centre peut accueillir jusqu'à 15 personnes, et 30 filets à nuages de 4m^2 l'alimentent en eau, soit 64L d'eau/personne/jour. Pour donner un ordre de grandeur : une douche ~ 50L d'eau.
<br/>
*D'où vient l'idée d'un filet à nuages ?
Les scientifiques qui étudient les phénomènes météorologiques utilisent divers instruments de mesure : anémomètre pour le vent, pluviomètre pour les précipitations, et “neblinometre” pour mesurer la quantité d'eau en suspension dans l'air. Un neblinometre standard SFC est un filet d'un mètre carré, installé à 3m du sol.
Les chercheurs utilisent tout d'abord les filets à nuages pour effectuer des relevés de mesures, enregistrer des données, afin de connaître l'évolution dans le temps de la répartition de l'eau à la surface du globe, et mettre en place des modèles et simuler les possibles évolutions futures.
Le centre d'investigation permet d'étendre la connaissance sur différentes thématiques : climat, végétation en milieu aride. L'intérêt est d'identifier la quantité d'eau présente dans l'atmosphère, la quantité utilisée par les écosystèmes, pour en déduire la quantité disponible pour les communautés. En connaissant le passé, il est possible d'en déduire des scénarii pour l'avenir.
A Alto Pataches, les filets à nuages sont utilisés essentiellement pour la recherche et l'éducation, mais servent également de modèle d'autonomie en eau en zone désertique.
Dans différents endroits du monde, les filets servent directement à la population locale, comme au Guatemala , au Népal ou au Pérou où les filets à nuages fournissent de l'eau douce ou encore à Chañaral au Chili où ils alimentent des plants de tomates et d'Aloe Vera ainsi que des bassins de pisciculture en eau douce.
*Où installer les filets à nuages ?
Dans un endroit où il y a des nuages (évidemment) mais aussi du vent, afin que celui-ci apporte les particules d'eau à travers la maille.
Il conviendra de placer les filets en hauteur où le vent est suffisamment puissant et surtout, en amont des habitations. L'eau n'aura plus qu'à descendre le long des tuyaux et aucune énergie ne sera nécessaire pour la transporter. La gravité fait le travail ! (d'où l'idée de stocker l'eau en hauteur dans une maison autonome en eau cf [[Système hydraulique global d'une habitation|http://lowtechlab.org/wiki/Syst%C3%A8me_hydraulique_global_d%27une_habitation]])
Il est important de dimensionner correctement l'installation, en fonction de la quantité d'eau nécessaire à la consommation, quand elle sera consommée ainsi que la quantité d'eau qu'on peut récupérer quand. Pour cela, il faut connaître les conditions climatiques locales et d'avoir des données sur de nombreuses années. Il faut mesurer la quantité d'eau qui pourra être récoltée selon les années (sèche ou humide), les mois (saison sèche ou humide) et les heures de la journée afin de dimensionner convenablement le système.
À noter que le plus important n'est pas d'installer une grande surface de filets mais assez de volume de stockage pour conserver l'eau au cours de l'année, afin d'assurer une sécurité de l'eau.
*Faut-il filtrer l'eau des filets à nuages avant de la boire ?
La réponse varie d'un endroit à un autre. Dans le désert d'Atacama, le sable soulevé par le vent se mélange aux gouttes d'eau. On laisse donc l'eau décanter dans les tanks, pour que le sable tombe au fond et récupérer l'eau plus propre au-dessus. On utilise un filtre à poussières pour éliminer les particules de sable restantes.
A Atacama, l'eau n'est pas traitée contre les bactéries mais il est possible d'utiliser une pastille de chlore pour la purifier. Il faut bien garder les tanks où l'eau est stockée fermés pour éviter toute contamination.
Exposées à la lumière du soleil, des algues peuvent se développer dans les tanks. On peint les tanks en noir afin que le soleil ne passe pas, rendant la photosynthèse des plantes impossible.
En partant de zéro, la construction et l'installation prend environ 1 semaine et coûte ~1000$. La maille en nylon résistant aux UV est peu chère et communément utilisée pour l'agriculture. Les câbles en acier galvanisé servant à maintenir la structure constituent le principal poste de dépenses.
Pour plus de précisions sur la construction et l'installation des Filets à Nuages, nous vous invitons à acheter le manuel de Fogquest : http://www.fogquest.org/videos-information/fogquest-manual/
D'après le professeur Pablo Osses de l’Instituto de Historia, Geografía y Ciencia Política de Santiago, les précipitations d'eau de pluie diminuent au fil des ans au Chili. Les filets à nuages seraient une des solutions pour faire face au manque d'eau. Le professeur nous en dit plus dans notre interview vidéo !
Dans le désert d'Atacama, au Nord du Chili, se trouvent des "oasis de nuages". Dans ces oasis, la présence de nuages a permis la naissance de tout un écosystème ! Lorsqu’il n'y a pas une goutte d'eau dans le sol, les végétaux réussissent à capter les particules d'eau en suspension dans l'air pour vivre en plein milieu du désert.
Et si nous nous inspirions de ces plantes et récupérions nous aussi l'eau transportée par les nuages ? C'est ce que font les "Attrape Nuages" ou encore “Filets à Nuages” : la maille du filet capture les particules d'eau ; les gouttes coulent le long de la maille, sont récoltées par une gouttière puis acheminées et stockées dans un tank.
En 1998, à Alto Pataches, près d’Iquique, dans le désert d'Atacama, un centre de recherche a été mis en place par l'Université Pontificia Universidad Católica de Chile et l'ONG Canadienne FogQuest. Il sert de centre d'investigation pour les professeurs et étudiants, mais également de centre d'éducation et de sensibilisation ouvert au public.
Ce centre d'investigation est isolé du réseau d'eau et d'électricité. Les filets à nuages produisent l'eau nécessaire au fonctionnement du centre, alimenté en énergie grâce à des panneaux solaires. Ici, un mètre carré de filet fournit en moyenne annuelle 8L d'eau par jour. Le centre peut accueillir jusqu'à 15 personnes, et 30 filets à nuages de 4m^2 l'alimentent en eau, soit 64L d'eau/personne/jour. Pour donner un ordre de grandeur : une douche ~ 50L d'eau.
<br/>
*D'où vient l'idée d'un filet à nuages ?
Les scientifiques qui étudient les phénomènes météorologiques utilisent divers instruments de mesure : anémomètre pour le vent, pluviomètre pour les précipitations, et “neblinometre” pour mesurer la quantité d'eau en suspension dans l'air. Un neblinometre standard SFC est un filet d'un mètre carré, installé à 3m du sol.
Les chercheurs utilisent tout d'abord les filets à nuages pour effectuer des relevés de mesures, enregistrer des données, afin de connaître l'évolution dans le temps de la répartition de l'eau à la surface du globe, et mettre en place des modèles et simuler les possibles évolutions futures.
Le centre d'investigation permet d'étendre la connaissance sur différentes thématiques : climat, végétation en milieu aride. L'intérêt est d'identifier la quantité d'eau présente dans l'atmosphère, la quantité utilisée par les écosystèmes, pour en déduire la quantité disponible pour les communautés. En connaissant le passé, il est possible d'en déduire des scénarii pour l'avenir.
A Alto Pataches, les filets à nuages sont utilisés essentiellement pour la recherche et l'éducation, mais servent également de modèle d'autonomie en eau en zone désertique.
Dans différents endroits du monde, les filets servent directement à la population locale, comme au Guatemala , au Népal ou au Pérou où les filets à nuages fournissent de l'eau douce ou encore à Chañaral au Chili où ils alimentent des plants de tomates et d'Aloe Vera ainsi que des bassins de pisciculture en eau douce.
*Où installer les filets à nuages ?
Dans un endroit où il y a des nuages (évidemment) mais aussi du vent, afin que celui-ci apporte les particules d'eau à travers la maille.
Il conviendra de placer les filets en hauteur où le vent est suffisamment puissant et surtout, en amont des habitations. L'eau n'aura plus qu'à descendre le long des tuyaux et aucune énergie ne sera nécessaire pour la transporter. La gravité fait le travail ! (d'où l'idée de stocker l'eau en hauteur dans une maison autonome en eau cf [[Système hydraulique global d'une habitation|http://lowtechlab.org/wiki/Syst%C3%A8me_hydraulique_global_d%27une_habitation]])
Il est important de dimensionner correctement l'installation, en fonction de la quantité d'eau nécessaire à la consommation, quand elle sera consommée ainsi que la quantité d'eau qu'on peut récupérer quand. Pour cela, il faut connaître les conditions climatiques locales et d'avoir des données sur de nombreuses années. Il faut mesurer la quantité d'eau qui pourra être récoltée selon les années (sèche ou humide), les mois (saison sèche ou humide) et les heures de la journée afin de dimensionner convenablement le système.
À noter que le plus important n'est pas d'installer une grande surface de filets mais assez de volume de stockage pour conserver l'eau au cours de l'année, afin d'assurer une sécurité de l'eau.
*Faut-il filtrer l'eau des filets à nuages avant de la boire ?
La réponse varie d'un endroit à un autre. Dans le désert d'Atacama, le sable soulevé par le vent se mélange aux gouttes d'eau. On laisse donc l'eau décanter dans les tanks, pour que le sable tombe au fond et récupérer l'eau plus propre au-dessus. On utilise un filtre à poussières pour éliminer les particules de sable restantes.
A Atacama, l'eau n'est pas traitée contre les bactéries mais il est possible d'utiliser une pastille de chlore pour la purifier. Il faut bien garder les tanks où l'eau est stockée fermés pour éviter toute contamination.
Exposées à la lumière du soleil, des algues peuvent se développer dans les tanks. On peint les tanks en noir afin que le soleil ne passe pas, rendant la photosynthèse des plantes impossible.
En partant de zéro, la construction et l'installation prend environ 1 semaine et coûte ~1000$. La maille en nylon résistant aux UV est peu chère et communément utilisée pour l'agriculture. Les câbles en acier galvanisé servant à maintenir la structure constituent le principal poste de dépenses.
Pour plus de précisions sur la construction et l'installation des Filets à Nuages, nous vous invitons à acheter le manuel de Fogquest : http://www.fogquest.org/videos-information/fogquest-manual/
D'après le professeur Pablo Osses de l’Instituto de Historia, Geografía y Ciencia Política de Santiago, les précipitations d'eau de pluie diminuent au fil des ans au Chili. Les filets à nuages seraient une des solutions pour faire face au manque d'eau. Le professeur nous en dit plus dans notre interview vidéo !
Un module audio Bluetooth miniature pour casque filaire (prise jack 3.5mm) a subitement cessé de fonctionner. Je l'ai ouvert et me suis aperçu que l'accumulateur Lithium-polymère était défaillant. J'ai donc entrepris de récupérer le module et de l'assembler dans un boîtier pour trois piles AA. Un accumulateur LiFePO4 au format AA (IFR14500) trouve place dans ce boîtier pour alimenter le module Bluetooth. Un module miniature de gestion de batterie (BMS 1S 4A) pour accumulateur Li-Ion protège l'accumulateur LiFePO4 de la décharge profonde afin d'éviter son endommagement. Cependant un premier essai montre un problème : la tension nominale de l'accumulateur LiFePO4 (3.2V) est inférieure à celle de l'accumulateur original Li-Po (3.7V) et le module Bluetooth émet des bips sonores car sa tension d'alimentation est trop faible. Pour corriger ceci, un module convertisseur DC-DC élévateur (MT3608) est inséré entre le module BMS et le module Bluetooth dont il régule la tension d'alimentation à 3.7V. Ce module consomme environ 100µA à vide lorsque le module Bluetooth est éteint : le petit interrupteur du boîtier de piles est employé pour couper l'alimentation du MT3608 lorsqu'on ne se sert pas du Bluetooth. L'accumulateur LiFePO4 employé est sûr et fiable, et il ne contient pas de cobalt. Personnellement je n'emploierais pas un accumulateur Li-Ion classique (LiCoO2) dans ce type de montage, car ces derniers représentent un risque accru d'incendie en cas d'erreur de câblage ou de court-circuit.
+Les petits concentrateurs solaires pour l’artisanat (boulangerie, cuisine, brasserie, torréfaction, stérilisation, …) fleurissent de plus en plus ! Ces appareils fonctionnent en concentrant une grande quantité de rayons du soleil dans un petit espace grâce à un jeu de miroirs, apportant une grande quantité d’énergie. Parmi les différents types de concentrateurs, les concentrateurs plans ont besoin d’être déplacés toutes les 5 minutes pour que les rayons réfléchis par les miroirs soient bien dirigés sur la fenêtre de chauffe du four. C’est une contrainte de temps, et pour certaines personnes (pas toutes!), cela constitue un frein pour passer le cap de l’artisanat solaire. Il est donc judicieux de s’intéresser à l'automatisation de ce type de concentrateur, dans le but de rendre l’accès au solaire à concentration plus facile au plus grand nombre. Ces concentrateurs plus ou moins low-tech peuvent donc être associés à un système qui permet de suivre la course du soleil de façon automatique, le “tracking”.
Cette étude a donc été menée sur un concentrateur solaire plan type ''Lytefire Cuiseur collectif''. Les plans de fabrication de ce concentrateur sont accessibles [https://lytefire.com/cuisiniere-autoconstruction <u>ici</u>].
Ce mécanisme d’automatisme azimutal (mouvement est-ouest) peut être repris sur n’importe quel type de concentrateur autre que Lytefire. Il fonctionne sur le principe du Shadow Band.
Ce document va donc présenter le fonctionnement et la fabrication de l’automatisme (mécanique, motorisation, capteur, électronique, programme Arduino, …).
NB : Ce tutoriel est allégé pour plus de lisibilité. Pour plus de détails, vous pouvez télécharger le fichier tutoriel pdf dans l'onglet Fichiers.
Licence : CC-BY-SA
+Le LowTechLab de Grenoble a construit une version 4m² du four solaire à concentration [https://lytefire.com/fr LyteFire], destiné à être montré à un public semi/pro de boulangers ou tout autre métier nécessitant de la chaleur (brasserie, torréfaction, séchage, ...) pour de l'accompagnement à l'auto-construction.
En voulant rendre accessible l'univers du lowtech à des artisans déjà sous contraintes (la position du four doit être précise à +- 2°, donc pas évident de rester devant pour le déplacer toutes les 3min ...), le projet s'oriente progressivement vers un suivi automatique du soleil.
Le four solaire, construit sur la base des plans du LyteFire de SolarFire au LowTechLab de Grenoble, vise à être motorisé
*S'adresser à un public semi-pro ou professionnel, qui a des contraintes de temporalité (tous les boulangers ne peuvent pas se permettre de rester derrière leur four toute la journée)
*Faire avec le maximum de récupération possible
Ce tuto est découpé de la façon suivante
1 - Contraintes sur le système : quel environnement (vitesse de déplacement, praticité de l'utilisation/entretien,
2 - Motoriser le chassis : réduction, moteurs et alimentation
2 - Asservir ces moteurs : carte arduino + "shadow band"
+This project is divided into 3 parts: mechanics (the most difficult), programming and electronics.
<br/>
*'''The mechanic part :''' 🔧
First of all, we made a sketch of the mechanism for this project, then we used CATIA V5 to design the 23 parts of the project. We then used PrusaSlicer to 3D print them using PLA filaments. This is the most difficult part, because we need to know exactly how the mechanism will work. So we bought 8 solar panels, 2 servomotors and rechargeable batteries. Finally, we put it all together.
<br/>
*'''The electronic part :''' 🔌
We used rechargeable batteries of 1.5 V each, connected in series to give 12 volts. We then connected these batteries in parallel to the solar panels, of which there are 8, which also gives us 12 volts. In addition, 4 of the batteries power the STM32 microprocessor, and from the STM32 we power the servomotors.
<br/>
*'''The programming part :''' 💻
After studying the chronology of sunset and sunrise in Brest over 365 days, we obtained the time difference between them (in minutes) and noted the variation in sunset and sunrise times throughout the year. For example, we found that the duration of sunshine increases each day until the 173rd day, then decreases until the end of the year, each day increasing/decreasing by 2.7 minutes.
In addition, the servomotor that controls the rotation of the solar panel supports changes direction every day from 0 to 180 degrees. However, the servomotor that controls the tilt follows the movement of the sun, depending on the year.
+L'EauTech is a project run by six students from the Ecole Centrale de Lille in collaboration with the Gold Of Bengal association.
The aim of the project is to build a low-tech solar watermaker, based on two projects already carried out at the Ecole Centrale de Lille: the Opensol project, which created a low-tech solar concentrator, and the Delta project, which created a low-tech watermaker.
You can find and download a summary of this tutorial in PDF format by clicking on this link: https://drive.google.com/open?id=1aqvStMdIfSuhj4bioxSa0Zk8wiuJO1vL .
+Ce tutoriel est une introduction à la construction de cuiseurs à bois économes, sans soudure et sans assemblage compliqués ni utilisation de machines. Ne perdons pas de vu que le métal est coupant et que nous n’avons que deux yeux pour la vie : nous vous recommandons l’usage de gants et lunettes de protection, surtout si vous construisez avec des enfants …
+Bait for Melipona bees was documented on during one of our trips, looking for low-techs in South America from June to September 2017 in Ecuador, Peru and Bolivia.
Don't be mistaken, the aim of this low-tech is not to kill bees but to attract them so they can create a colony and in the end...honey!
Pablo, an Ecuadorian beekeeper uses this technique. He thinks this system is adaptable to all bee species but it has only been tested on the Melipona species for the moment. They are small bees that don't sting, they can be found in Mexico, Central America and South America. Pablo works in the Finca Fina farm near Malacatos in the South of Ecuador and looks after animals as well as bees, but his speciality is bees!
These bees are micro-pollinators, they allow plants to reproduce and develop up to several kilometres away. They are largely declining all around the world due to the use of pesticides, mainly neonicotinoids Therefore, developing this technique to create new hives has 2 effects: supporting economic development by producing more honey and helping the bee population increase in surrounding areas.
In order to make this bait, you need to have a beehive belonging to the target species. In effect, you will need to use propolis. It's a mixture of wax and plant resin that bees collect in nature, it is a browny-green colour and can be found in the beehive.
+In our desire to reuse waste and create a mini kitchen garden, we've put together this tutorial to help other students with the same idea. What's more, as we live in a rainy region, we've chosen to set up this vegetable garden outside to take advantage of rainwater and save on running water.
Today, many students live alone in flats and find it difficult to eat properly. There are many recipes for tasty dishes using herbs and plants, but some students prefer not to use them in order to save money on food. Unfortunately, this takes away from the flavour of the dishes. One solution would be to grow your own herbs, but this can be complicated in a flat, where there is already a lack of space and conditions are not optimal.
In our desire to reuse waste and create a mini flat garden, we set up this tutorial to help other students with the same desire. We created a balcony vegetable garden using recycled bottles and fabric. All the materials are available to every student. Once made, the planter can be hung from the railing of a balcony. There, it can enjoy the sun, but also the rain (in our lovely city of Brest).
This project will show you how to make your own flat planter and give you tips on maintaining and watering the plants.
<br/>
+Dans ce tutoriel, vous allez apprendre comment faire une superbe banane en kakemono (affiche de communication) à l'aide d'une machine à coudre.
+