(Mise à jour pour être en accord avec la nouvelle version de la source de la page) |
(Mise à jour pour être en accord avec la nouvelle version de la source de la page) |
||
Ligne 121 : | Ligne 121 : | ||
|Step_Content=Pour cette partie, nous vous invitons à consulter le tutoriel [http://lowtechlab.org/wiki/R%C3%A9cup%C3%A9ration_de_batteries Récupération de batteries] | |Step_Content=Pour cette partie, nous vous invitons à consulter le tutoriel [http://lowtechlab.org/wiki/R%C3%A9cup%C3%A9ration_de_batteries Récupération de batteries] | ||
− | + | * Enfiler des gants pour protéger les mains. | |
− | + | * Fixer la batterie sur un étau afin qu’elle ne bouge plus, et avec l’aide d’un marteau et d'un burin l'ouvrir. ''(image 1)'' | |
− | + | * Isoler chaque cellule : décortiquer les cellules à l’aide d’une pince coupante, afin d'enlever tous les autres composants. ''(image 2)'' | |
<br /> | <br /> | ||
Ligne 147 : | Ligne 147 : | ||
Pour mesurer la capacité d'une cellule il faut la charger au maximum puis la décharger. Nos cellules sont constituées de lithium, or le lithium a besoin d’être chargé et déchargé correctement, la charge maximale étant de 4,2 V et la charge minimale de 3 V. Dépasser ces seuils endommagerait les cellules. | Pour mesurer la capacité d'une cellule il faut la charger au maximum puis la décharger. Nos cellules sont constituées de lithium, or le lithium a besoin d’être chargé et déchargé correctement, la charge maximale étant de 4,2 V et la charge minimale de 3 V. Dépasser ces seuils endommagerait les cellules. | ||
− | + | *Se munir d’une Power Bank : un dispositif qui permet de charger plusieurs cellules en même temps via un port USB. | |
− | + | *Charger les cellules et attendre que la charge soit complète (tous les voyants seront allumés), compter environ 24h. ''(image 3)'' | |
− | + | *Les cellules sont toutes chargées au maximum (4,2 V), il faut désormais les décharger. | |
− | + | *Se munir d'un Imax B6 : un dispositif permettant de décharger les cellules une par une et de calculer la capacité qu'elle à rendre l'énergie. | |
− | + | *Régler le dispositif : | |
− | + | *le voltage : il vous est demandé quel type de piles vous voulez charger, choisir des cellules lithium. Le voltage va alors être réglé automatiquement à 3V (la décharge n’ira pas en dessous de 3V). | |
− | + | *l’ampérage : régler à 1A pour que la décharge soit assez rapide et sécurisée. Dans ces conditions comptez à peu près 1h à 1h30 pour la décharge. | |
− | + | *Connecter les aimants au néodyme aux pinces crocodiles, puis les connecter aux cellules, les aimants servent à faire passer le courant entre l'Imax B6 et les cellules. ''(image 4)'' | |
− | |||
− | Décharger la cellule jusqu’à ce que la décharge soit complète. | + | * Décharger la cellule jusqu’à ce que la décharge soit complète. |
− | |||
− | Noter la capacité sur la cellule. Plus la capacité de la cellule à rendre de l’énergie est importante mieux c’est. | + | * Noter la capacité sur la cellule. Plus la capacité de la cellule à rendre de l’énergie est importante mieux c’est. |
− | + | *Trier vos cellules: <1000 mA, entre 1000 et 1300, 1300 et 1500 et >1800 mA. | |
'''Remarque''' : Il est important de réaliser des batteries homogènes avec des cellules ayant à peu près la même capacité. | '''Remarque''' : Il est important de réaliser des batteries homogènes avec des cellules ayant à peu près la même capacité. | ||
Ligne 180 : | Ligne 178 : | ||
|Step_Content='''Module 1 : Panneau solaire et régulateur de charge''' | |Step_Content='''Module 1 : Panneau solaire et régulateur de charge''' | ||
− | # Se munir de deux fils, un rouge et un noir, les dénuder à l'aide d'une pince coupante. | + | #Se munir de deux fils, un rouge et un noir, les dénuder à l'aide d'une pince coupante. |
− | # Souder le fil rouge sur le pôle positif du panneau solaire et le fil noir sur son pôle négatif. | + | #Souder le fil rouge sur le pôle positif du panneau solaire et le fil noir sur son pôle négatif. |
− | # Le régulateur de charge possède 2 entrées : IN - et IN + (qui sont indiquées sur le composant) | + | #Le régulateur de charge possède 2 entrées : IN - et IN + (qui sont indiquées sur le composant) |
− | # Souder le fil rouge (positif) au pôle IN + du régulateur de charge et le fil noir (négatif) au pôle IN -. ''(image 5)'' | + | #Souder le fil rouge (positif) au pôle IN + du régulateur de charge et le fil noir (négatif) au pôle IN -. ''(image 5)'' |
'''Module 2 : Batterie''' | '''Module 2 : Batterie''' | ||
− | # Insérer la cellule lithium dans le porte batterie. | + | #Insérer la cellule lithium dans le porte batterie. |
'''Module 3 : LED''' '''/ USB convertisseur''' | '''Module 3 : LED''' '''/ USB convertisseur''' | ||
Ligne 198 : | Ligne 196 : | ||
Entrées : VIN + et VIN - / Sorties : OUT + et OUT - | Entrées : VIN + et VIN - / Sorties : OUT + et OUT - | ||
− | + | *Se munir de deux fils (rouge et noir). | |
− | + | *Souder le fil rouge avec l'entrée VIN + du régulateur de tension et le fil noir avec l'entrée VIN -. | |
La LED possède deux fils d'entrée, un fil positif et un fil négatif. | La LED possède deux fils d'entrée, un fil positif et un fil négatif. | ||
Ligne 206 : | Ligne 204 : | ||
''Attention :'' La polarité des fils n'est pas indiquée sur la LED. Afin de la connaître munissez vous d'un ohmmètre. Lorsqu'il indique une valeur nulle c'est que le fil est positif. Lorsqu'il indique une valeur élevée c'est qu'il s'agit du fil négatif. | ''Attention :'' La polarité des fils n'est pas indiquée sur la LED. Afin de la connaître munissez vous d'un ohmmètre. Lorsqu'il indique une valeur nulle c'est que le fil est positif. Lorsqu'il indique une valeur élevée c'est qu'il s'agit du fil négatif. | ||
− | + | * Souder le fil positif de la LED à la sortie OUT + du convertisseur de tension et le fil négatif à la sortie OUT -. ''(image 7)'' | |
|Step_Picture_00=Lampe_solaire_à_batteries_lithium_récupérées_Sch_ma_circuit.JPG | |Step_Picture_00=Lampe_solaire_à_batteries_lithium_récupérées_Sch_ma_circuit.JPG | ||
}} | }} | ||
Ligne 213 : | Ligne 211 : | ||
|Step_Content=Le régulateur de charge possède 2 entrées : IN - et IN + (qui sont indiquées sur le composant) | |Step_Content=Le régulateur de charge possède 2 entrées : IN - et IN + (qui sont indiquées sur le composant) | ||
− | + | * Souder le fil rouge du panneau solaire (positif) au pôle IN + du régulateur de charge et le fil noir (négatif) au pôle IN -. | |
− | Le régulateur de charge possède 2 entrées : B - et B+ (qui sont indiquées sur le composant) | + | * Le régulateur de charge possède 2 entrées : B - et B+ (qui sont indiquées sur le composant) |
− | + | * Souder le fil rouge du porte batterie (positif) au pôle B + du régulateur de charge et le fil noir (négatif) au pôle B-. | |
− | + | * Souder le fil rouge (positif) du module convertisseur USB/LED au pôle OUT+ du régulateur de charge et le fil négatif (noir) au pôle OUT- ''Remarque :''' Le circuit est alors fermé et la lumière s’allume. | |
− | ''Remarque :''' Le circuit est alors fermé et la lumière s’allume. | ||
− | + | * Couper le fil positif qui relie le régulateur au convertisseur pour ouvrir le circuit, et y souder l’interrupteur en série. Celui-ci permettra d’ouvrir et de fermer le circuit. | |
|Step_Picture_00=Lampe_solaire_à_batteries_lithium_récupérées_59617234_1691814157630745_3212849031642349568_n.jpg | |Step_Picture_00=Lampe_solaire_à_batteries_lithium_récupérées_59617234_1691814157630745_3212849031642349568_n.jpg | ||
}} | }} |
Tutorial de Low-tech Lab | Catégories : Énergie
This tutorial allows you to make a solar lamp equipped with a USB charger. It uses lithium cells that are reused from a old or damaged laptop. This system, with a day of sunlight, can fully charge a smartphone and have 4 hours of light. This technology have been documented during a stopover of the " Nomade des Mers " expedition on the island of Luzong in the northern part of Philippines. The association Liter of Light has already installed this system since 6 years in remote villages which don't have access to electricity. They also organize training for the villagers in order to teach them how to fix the solar lamp ( already 500 000 lamps installed).
This tutorial allows you to make a solar lamp equipped with a USB charger. It uses lithium cells that are reused from a old or damaged laptop. This system, with a day of sunlight, can fully charge a smartphone and have 4 hours of light. This technology have been documented during a stopover of the " Nomade des Mers " expedition on the island of Luzong in the northern part of Philippines. The association Liter of Light has already installed this system since 6 years in remote villages which don't have access to electricity. They also organize training for the villagers in order to teach them how to fix the solar lamp ( already 500 000 lamps installed).
lampe, solaire, batterie lithium recyclées, récupération, batterie ordinateur portable, recyclage, cellules lithium usagées, NomadeDesMers, nomade des mers, NomadeDesMers
Lithium is a natural resource whose stocks are increasingly used for electric cars, telephones, and computers. This resource is gradually being depleted over time. Its increased use in battery manufacturing is mainly due to its ability to store more energy than nickel and cadmium. The replacement of electrical and electronic equipment is accelerating and it is becoming an increasingly important source of waste (DEEE: Waste electrical and electronic equipment). France currently produces 14kg to 24kg of electronic waste per inhabitant per year. This rate increases by about 4% per year. In 2009, only 32% of young French people aged between 18 and 34 years old, have once recycled their electronic waste. In the same year 2009, according to Eco-systèmes, from January to September 2009, 113,000 tonnes of CO2 were avoided through the recycling of 193,000 tonnes of DEEE, one of the four eco-organisations in the DEEE sector.
However, this waste has a high recycling potential. In particular, lithium present in the cells of computer batteries. When a computer battery fails, one or more cells are defective, but some remain in good condition and can be reused. From these cells it is possible to create a separate battery, which can be used to power an electric drill, recharge your phone or be connected to a solar panel to operate a lamp. By combining several cells it is also possible to form larger device storage batteries.
Youtube
Cells extraction
For the lamp fabrication :
This tutorial shows how to recover computer cells to make a new battery. Powered by a solar panel, or by a USB port, it will allow you to light an LED lamp.
The system works around three modules:
Energy Receiving Module: Photovoltaic Panel & Charge Controller
The photovoltaic panel concentrates the energy of the sun. It allows to recover its energy in order to store it in the battery. But be careful, the amount of energy received by the panel is irregular depending on the time of day, the weather... it is important to install a charge/discharge regulator between the panel and the battery. This will be protected against overload, among other things.
Energy storage module: the battery
It is composed of two lithium cells recovered from a computer. To put it in a nutshell, a battery is a bit like a box containing several batteries: each of them is a cell, a unit that supplies power to the device by electrochemical reaction.
The cells found in computers are lithium cells. They all have the same capacity to store energy, but their ability to make it is different for each. To form a battery from cells it is important that they all have the same ability to deliver energy. It is therefore necessary to measure the capacity of each cell to compose homogeneous batteries.
'Module that renders the energy: the LED lamp, the 5V USB port and its voltage converter
Our battery supplies us with 3.7V power and the LED lamps we used operate at the same voltage. In addition, the USB ports provide a voltage of 5V. We therefore need to transform the cell energy from 3.7V to 5V: using a voltage converter called DC/DC booster
1) Removing the cells from the computer battery
2) Mesure du voltage des cellules
3) Réalisation des 3 modules :
4) Liaison des 3 modules :
5) Construction du boîtier
6) Intégration des modules dans le boîtier
Pour cette partie, nous vous invitons à consulter le tutoriel Récupération de batteries
Pour cette partie, nous vous invitons à consulter le tutoriel Récupération de batteries
Mesure du voltage:
Toutes les cellules ayant une tension inférieure à 2,7 V ne sont pas récupérables.
Attention : Si des cellules ont coulé (visible à l’extérieur de la batterie d’ordinateur), ne pas les démonter, à forte dose le lithium est dangereux pour la santé.
Mesure de la capacité :
Pour mesurer la capacité d'une cellule il faut la charger au maximum puis la décharger. Nos cellules sont constituées de lithium, or le lithium a besoin d’être chargé et déchargé correctement, la charge maximale étant de 4,2 V et la charge minimale de 3 V. Dépasser ces seuils endommagerait les cellules.
Remarque : Il est important de réaliser des batteries homogènes avec des cellules ayant à peu près la même capacité.
Module 1 : Panneau solaire et régulateur de charge
Module 2 : Batterie
Module 3 : LED / USB convertisseur
Le convertisseur de tension DC/DC possède deux entrées et deux sorties :
Entrées : VIN + et VIN - / Sorties : OUT + et OUT -
La LED possède deux fils d'entrée, un fil positif et un fil négatif.
Attention : La polarité des fils n'est pas indiquée sur la LED. Afin de la connaître munissez vous d'un ohmmètre. Lorsqu'il indique une valeur nulle c'est que le fil est positif. Lorsqu'il indique une valeur élevée c'est qu'il s'agit du fil négatif.
Le régulateur de charge possède 2 entrées : IN - et IN + (qui sont indiquées sur le composant)
Version 1 : Tupperware
Ce design est celui de Open Green Energy, n'hésitez pas à consultez le tutoriel d'origine . Il nous parait très intéressant, c'est pourquoi nous le partageons. Néanmoins, il faudrait adapter le boitier à notre circuit, notamment pour la sortie USB. Nous proposerons notre propre modèle inspiré de ce design prochainement.
Version 2 : Bouteille Thermoformée grand format
Fabrication des deux socles :
Il s’agit des deux extrémités de la lampe, la supérieur accueillant le panneau solaire d’un côté et le circuit électrique de l’autre, l’inférieur servant juste à refermer la lampe tout en l’étanchéifiant.
Découper 2 planches de 15/13cm et 2 planches de 11/13cm. Positionner sur chaque grande planche une petite en prenant soin de bien les centrer. Chaque couple sera vissé plus tard.
Fabrication du moule :
Découper dans le tasseau 4 tronçons d’une vingtaine de centimètres. Positionner les aux 4 coins des petites planchettes découpées plus haut (les 11/13 cm) et les visser tête de vis côté planchette. De l’autre côté positionner l’autre planchette et la visser de la même manière. On obtient donc un parallélépipède de dimensions 11/13/20 qui servira à thermoformer la bouteille en plastique (voit photo).
Thermoformage de l’enveloppe de la lampe :
Découper le fond de la bouteille de 5L et y insérer le moule verticalement (le côté de 20cm dans la longueur de la bouteille).
Chauffer doucement au décapeur thermique chaque face du rectangle (le décapeur doit être à environ 10 cm de la bouteille). Une fois que la bouteille a pris la forme du modèle, continuer à chauffer pour effacer les motifs et bien tendre le plastique.
En laissant la bouteille déformée sur le moule, couper proprement au ras du moule le haut de la bouteille et refaire une découpe propre à environ 17 cm de la première.
Une fois les découpes effectuées, dévisser les tasseaux des deux côtés afin de pouvoir démouler la forme (le retrait du plastique aura provoqué un serrage important du moule).
A chaque extrémités de la bouteille déformée, replier à 90° vers l’intérieur des languettes d’une largeur d’environ 1 cm biseautées de chaque côté (voir photo). Celles-ci viendront s’immiscer entre les deux planchettes de chaque socle afin d’améliorer l’étanchéité de la lampe. Pour pouvoir plier correctement les languettes, tracer une fine ligne au cutter à l’intérieur puis plier à la main.
Une fois le corps de la lampe terminé, il ne manque plus qu’à intégrer le circuit électrique.
Pour cela, reprendre une des petites planchettes utilisées pour le moule (11/13cm) et y visser tous les composants comme désiré, sachant qu’un minimum de symétrie permet de garantir l’équilibre de l’objet (voici en photo un exemple de disposition).
A l’aide d’un marqueur tracer sur l’enveloppe en plastique l’emplacement du bouton ON/OFF et de la prise USB et faire les trous correspondant.
Placer la planche avec le circuit à l’intérieur de l’enveloppe en plastique puis visser une des planches de 15/13cm dessous en prenant soin de bien coincer les languettes entre les deux planches.
Fixation du panneau solaire :
Placer le panneau sur la grande planchette, déterminer l’emplacement des sorties + et – du panneau et faire un trou d’environ 5mm à cet endroit dans les deux planchettes (vérifier qu’aucun composant n’est à cet endroit auquel cas il faudra décaler le trou suffisamment).
Faire passer les fils venant du contrôleur de charge dans ce trou et les souder aux sorties correspondantes.
Pour coller l’idéal est d’utiliser un tissu fin collé à la planchette puis d’y coller le panneau (à la super glu par exemple).
Pour le socle de la lampe faire de même de l’autre côté ; placer la petite planchette à l’intérieur de l’enveloppe puis y visser la grande en prenant soin de coincer les languettes entre les deux.
Pour l’étanchéité de la prise USB, agrafer un petit rectangle de chambre à air de vélo est largement suffisant.
en fr 1 Published
Vous avez entré un nom de page invalide, avec un ou plusieurs caractères suivants :
< > @ ~ : * € £ ` + = / \ | [ ] { } ; ? #