Chauffe-eau solaire à thermosiphon/en : Différence entre versions

(Page créée avec « Thermosyphon Solar Water Heater »)
 
 
(51 révisions intermédiaires par 2 utilisateurs non affichées)
Ligne 3 : Ligne 3 :
 
|Main_Picture_annotation={"version":"2.4.6","objects":[{"type":"image","version":"2.4.6","originX":"left","originY":"top","left":-72,"top":-3,"width":5184,"height":3456,"fill":"rgb(0,0,0)","stroke":null,"strokeWidth":0,"strokeDashArray":null,"strokeLineCap":"butt","strokeDashOffset":0,"strokeLineJoin":"miter","strokeMiterLimit":4,"scaleX":0.13,"scaleY":0.13,"angle":0,"flipX":false,"flipY":false,"opacity":1,"shadow":null,"visible":true,"clipTo":null,"backgroundColor":"","fillRule":"nonzero","paintFirst":"fill","globalCompositeOperation":"source-over","transformMatrix":null,"skewX":0,"skewY":0,"crossOrigin":"","cropX":0,"cropY":0,"src":"https://wiki.lowtechlab.org/images/c/c8/Chauffe-eau_solaire_thermosyphon_IMG_5181.jpg","filters":[]}],"height":449.7854077253219,"width":600}
 
|Main_Picture_annotation={"version":"2.4.6","objects":[{"type":"image","version":"2.4.6","originX":"left","originY":"top","left":-72,"top":-3,"width":5184,"height":3456,"fill":"rgb(0,0,0)","stroke":null,"strokeWidth":0,"strokeDashArray":null,"strokeLineCap":"butt","strokeDashOffset":0,"strokeLineJoin":"miter","strokeMiterLimit":4,"scaleX":0.13,"scaleY":0.13,"angle":0,"flipX":false,"flipY":false,"opacity":1,"shadow":null,"visible":true,"clipTo":null,"backgroundColor":"","fillRule":"nonzero","paintFirst":"fill","globalCompositeOperation":"source-over","transformMatrix":null,"skewX":0,"skewY":0,"crossOrigin":"","cropX":0,"cropY":0,"src":"https://wiki.lowtechlab.org/images/c/c8/Chauffe-eau_solaire_thermosyphon_IMG_5181.jpg","filters":[]}],"height":449.7854077253219,"width":600}
 
|Licences=Attribution (CC BY)
 
|Licences=Attribution (CC BY)
|Description=Un système très simple permettant de chauffer de l'eau grâce à l'énergie solaire. Ce système fonctionne, sans pompe, en utilisant seulement l'effet de thermosiphon.
+
|Description=A very simple system for heating water using solar energy. This system works, without a pump, using only the thermosiphon effect.
 
|Area=Habitat, Water, Energy, Hygiene
 
|Area=Habitat, Water, Energy, Hygiene
 
|Type=Prototype
 
|Type=Prototype
Ligne 11 : Ligne 11 :
 
|Cost=20
 
|Cost=20
 
|Currency=EUR (€)
 
|Currency=EUR (€)
|Tags=chauffe-eau, eau chaude, panneau solaire thermique, solar water heater, cellule solaire thermique, NomadeDesMers, thermosyphon, récupération
+
|Tags=chauffe-eau, eau chaude, panneau solaire thermique, solar water heater, cellule solaire thermique, NomadeDesMers, récupération, thermosiphon
 
}}
 
}}
 
{{Introduction
 
{{Introduction
|Introduction=Les systèmes de chauffage solaire de l’eau utilisent des panneaux solaires, appelés capteurs.
+
|Introduction=Domestic hot water, which is used for household and toilet needs, represents a significant consumption.
  
Cela permet de recueillir la chaleur du soleil et de l’utiliser pour chauffer l’eau qui est stockée dans un ballon d’eau chaude.
+
* In (drinking) water: the volume of water consumed is strongly influenced by the behaviour of the users. According to [http://www.new-learn.info/packages/tareb/docs/ecb/ecb_ch5_fr.pdf the magazine Plein soleil / C.N.R.S-EcoDev], in France, a standard type 4 dwelling (three bedrooms) uses 100 to 150 litres of hot water (at 60 [°C]) per day. However, there is a constant increase in the need for water, especially hot water, in the order of 3 to 4% per year (Gaz de France survey).
 +
*In energy: the heating of domestic water accounts for nearly 20% of final energy consumption in the residential sector (according to the Observatoire de l'énergie).
  
Il existe deux types de panneaux solaires de chauffage de l’eau:
+
Turning solar energy into heat is simple and efficient. A thermal solar panel has an efficiency 3 to 4 times higher than a photovoltaic panel.  However, electricity and fossil fuels are mostly used to heat water.
  
*tubes sous vide ;
+
Solar water heating systems use solar panels, called collectors. This allows the heat from the sun to be collected and used to heat the water that is stored in a hot water tank.
*capteurs plans, qui peuvent être fixés sur un mur ou un toit.
 
  
Les capteurs sous vide sont réputés plus efficaces car souffrant moins de déperdition ( grâce  au vide d’air dans les tubes) que les capteurs plans. Ils sont néanmoins plus compliqué à réaliser en low-tech.
+
There are two types of solar panels for water heating:
  
 +
*vacuum tubes;
 +
*flat collectors, which can be mounted on a wall or a roof.
  
Nous avons décidé de tester un capteur de type plan fonctionnant en thermosiphon, c'est-à-dire système de pompe.
+
Vacuum collectors are known to be more efficient because they suffer less leakage (thanks to the air vacuum in the tubes) than flat collectors. They are nevertheless more complicated to realize in low-tech.
 +
 
 +
We decided to test a plane-type sensor operating as a thermosiphon, i.e. without pumping system. n addition, we chose to heat the water directly, without using a heat transfer fluid that would transfer its calories to the water in the tank.
 +
}}
 +
{{Materials
 +
|Material=
 +
|Tools=
 
}}
 
}}
{{Materials}}
 
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Théorie du thermosyphon
+
|Step_Title=Thermosyphon Theory
|Step_Content=Notre système ne comporte aucun système de pompage. La circulation d'eau se fait uniquement grâce à un phénomène thermodynamique que l'on appelle '''[[wikipedia:Thermosiphon|thermosiphon]]'''.  
+
|Step_Content=Our system has no pumping system. The water circulation is only done thanks to a thermodynamic phenomenon called '''[https://en.wikipedia.org/wiki/Thermosiphon thermosiphon]'''.
  
Le principe du système à thermosiphon est que l'eau froide a une densité plus élevée que l'eau chaude, car plus compacte. Elle est donc plus lourde et s'enfonce. Or tout système tend vers un état d'équilibre thermodynamique. Il apparait donc un mouvement appelé, [https://fr.wikipedia.org/wiki/Convection_thermique convection thermique], pour mélanger l'eau chaude et froide.  
+
The principle of the thermosiphon system is that cold water has a higher density than hot water because it is more compact. It is therefore heavier and sinking. However, all systems tend towards a state of thermodynamic equilibrium. There is a movement called [https://en.wikipedia.org/wiki/Convective_heat_transfer thermal convection] to mix hot and cold water.
  
C'est pourquoi le capteur solaire est toujours monté sous le réservoir de stockage d'eau, de sorte que l'eau froide du réservoir arrive au capteur par une conduite d'eau descendante. Lorsque l'eau chauffe dans le capteur, l'eau chaude remonte naturellement, poussée par l'eau froide et retourne au réservoir  Le cycle réservoir -> conduite d'eau ->capteur permet de chauffer l'eau jusqu'à ce qu'elle atteigne une température d'équilibre. Le consommateur peut alors utiliser l'eau chaude du haut du réservoir.
+
For this reason, the solar collector is always mounted underneath the water storage tank, so that the cold water from the tank reaches the collector via a downhill water pipe. When the water in the collector heats up, the hot water rises naturally, pushed up by the cold water and returns to the tank. The cycle tank -> water pipe -> collector heats the water until it reaches an equilibrium temperature. The consumer can then use the hot water from the top of the tank.
  
 
<br />
 
<br />
 
|Step_Picture_00=Chauffe-eau_solaire___thermosyphon_thermosiphon.JPG
 
|Step_Picture_00=Chauffe-eau_solaire___thermosyphon_thermosiphon.JPG
 +
|Step_Picture_01=Chauffe-eau_solaire___thermosiphon_Sch_ma_chauffe_eau_solaire.JPG
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Construction du cadre
+
|Step_Title=Frame construction
|Step_Content=Les mesures sont données à titre indicatif. Celles-ci sont à adapter en fonction de la taille de votre vitre.
+
|Step_Content=The measurements are given for information only. They have to be adapted according to the size of your window.
  
* Sur la plaque de contreplaqué de 85x85cm, visser deux tasseaux de 85cm et deux tasseaux de 72cm, de façon à former un cadre. Choisir de tasseaux d’environ 6 cm d’épaisseur afin d’avoir un peu de profondeur.
+
* On the 85x85cm plywood plate, screw two 85cm cleats and two 72cm wooden strips to form a frame. Choose strips about 6 cm thick to have a little depth.
* Vérifie que votre vitre s’intègre bien à l’intérieur du cadre.
+
* Check that your glass fits into the frame.
* Ajouter des cales à l’intérieur du cadre de façon à pouvoir faire reposer la vitre dessus.
+
* Add holds inside the frame so that you can rest the glass on it.
* Percer deux trous de diamètre 6mm sur un côté du cadre. Ceux-ci serviront à faire sortir les tuyaux de cuivre vers l’extérieur.
+
* Drill two 6mm diameter holes on one side of the frame. These will be used to lead the copper pipes outwards.
 
|Step_Picture_00=Chauffe-eau_solaire___thermosyphon_IMG_5184.jpg
 
|Step_Picture_00=Chauffe-eau_solaire___thermosyphon_IMG_5184.jpg
 
|Step_Picture_01=Chauffe-eau_solaire___thermosyphon_IMG_5193.jpg
 
|Step_Picture_01=Chauffe-eau_solaire___thermosyphon_IMG_5193.jpg
Ligne 56 : Ligne 64 :
 
{{Tuto Step
 
{{Tuto Step
 
|Step_Title=Isolation
 
|Step_Title=Isolation
|Step_Content=Afin de conserver un maximum de chaleur à l’intérieur du chauffe-eau, il est important que le cadre soit isolé au maximum. Il faut éviter les fuites d’air et les ponts thermiques. Nous avons donc isolé le fond du cadre.
+
|Step_Content='''In order to retain maximum heat inside the water heater, it is important that the frame is insulated as much as possible. ''' This is not the case for this prototype.
 +
 
 +
Air leakage and thermal bridges must be avoided. We have therefore insulated the bottom of the frame.
  
·        Découper du carton (ou tout autre isolant) de façon à l’ajuster parfaitement au fond du cadre.
+
- Cut cardboard (or other insulation) to fit the bottom of the frame perfectly.
  
·        Recouvrir le carton de 2 couches de papier aluminium. Ceci a pour but de repartir la chaleur de façon bien homogène sur la surface en contact avec le tube de cuivre.  
+
- Cover the cardboard with 2 layers of aluminium foil. The purpose of this is to distribute the heat evenly over the surface in contact with the copper tube.
 
|Step_Picture_00=Chauffe-eau_solaire___thermosyphon_IMG_5209.jpg
 
|Step_Picture_00=Chauffe-eau_solaire___thermosyphon_IMG_5209.jpg
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Circuit d'eau
+
|Step_Title=Water circuit
|Step_Content=Dans ce système, il n’y a pas d’échangeur thermique comme dans un ballon d’eau chaude classique. L’eau du ballon passe directement dans le tuyau de cuivre et se chauffe à son contact. Nous allons donc former un circuit de manière à maximiser la surface d’échange entre le tuyau et l’eau.
+
|Step_Content=In this system, there is no heat exchanger as in a conventional hot water tank. The water in the tank passes directly through the copper pipe and heats up on contact with it. We will therefore form a circuit in order to maximize the exchange surface between the pipe and the water.
  
* A l’aide d’un outil à cintrer, former un circuit avec le tuyau de cuivre.
+
* Using a bending tool, form a circuit with the copper pipe.
  
'''Remarque''' : Il est important d’utiliser un outil approprié pour réaliser une belle courbure et ne pas faire de pli dans le tuyau. A ce diamètre, le tuyau a vite tendance à se plier et finira par casser.
+
'''Note''': It is important to use a suitable tool to make a nice bend and not to make a bend in the pipe. At this diameter, the pipe tends to bend quickly and will eventually break.
  
 
<br />
 
<br />
  
* Assurez-vous de garder une bonne longueur rectiligne aux extrémités et faite les sortir par les 2 trous prévus à cet effet dans le cadre.
+
* Make sure to keep a good straight length at the ends and take them out through the 2 holes provided for this purpose in the frame.
* Afin de maximiser la surface d’échange entre le circuit et le fond du cadre recouvert de papier aluminium, fixer le circuit à l’aide de vis et de crochet (voir photos).
+
* In order to maximize the exchange surface between the circuit and the bottom of the frame covered with aluminium foil, fix the circuit with screws and hooks (see photos).
 
|Step_Picture_00=Chauffe-eau_solaire___thermosyphon_IMG_5217.jpg
 
|Step_Picture_00=Chauffe-eau_solaire___thermosyphon_IMG_5217.jpg
 
|Step_Picture_01=Chauffe-eau_solaire___thermosyphon_IMG_5222.jpg
 
|Step_Picture_01=Chauffe-eau_solaire___thermosyphon_IMG_5222.jpg
Ligne 82 : Ligne 92 :
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Pose de la vitre
+
|Step_Title=Glass pose
|Step_Content=* Déposer la vitre sur les cales du cadre. Assurer-vous qu’elle est bien ajustée et bien hermétique. Au besoin, combler les interstices avec du carton, du tissu ou du silicone pour isoler.
+
|Step_Content=* Place the glass on the frame holds. Make sure that it is tightly fitted and sealed. If necessary, fill the gaps with cardboard, fabric or silicone for insulation.
* Pour fixer la vitre au cadre, visser des tasseaux sur les bords.
+
* To fix the glass to the frame, screw strips on the edges.
 
|Step_Picture_00=Chauffe-eau_solaire___thermosyphon_IMG_5211.jpg
 
|Step_Picture_00=Chauffe-eau_solaire___thermosyphon_IMG_5211.jpg
 
|Step_Picture_01=Chauffe-eau_solaire___thermosyphon_IMG_5213.jpg
 
|Step_Picture_01=Chauffe-eau_solaire___thermosyphon_IMG_5213.jpg
Ligne 90 : Ligne 100 :
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Liaison avec le réservoir d'eau
+
|Step_Title=Connection to the water tank
|Step_Content=Pour le réservoir d’eau, nous avons choisi une poubelle de 30L avec un couvercle. Dans l’idéal, il faudrait isoler le réservoir pour conserver la chaleur.
+
|Step_Content=For the water tank, we have chosen a 30L waste bin with a lid. Ideally, the tank should be insulated to conserve heat.
  
* Couper les tuyaux de cuivre en sortie du cadre en laissant dépasser 2-3cm.
+
* Cut the copper pipes coming out of the frame leaving 2-3cm.
* Fixer un tuyau de silicone ou latex sur chacune des sorties à l’aide de colliers de serrage. Assurer-vous que la liaison est bien hermétique en soufflant dans les tuyaux silicone/latex lorsque le circuit est rempli d’eau, par exemple.
+
* Attach a silicone or latex tube to each of the outlets using hose clamps. Make sure that the connection is airtight by blowing into the silicone/latex tubes when the circuit is filled with water, for example.
  
'''Remarque''' : Attention à ne pas trop serrer les colliers de serrage qui finiront par déchirer les tuyaux en silicone/latex.
+
'''Note''': Be careful not to over-tighten the hose clamps which will eventually tear the silicone/latex hoses.
  
 
<br />
 
<br />
  
*  Plonger les deux tuyaux dans le réservoir.
+
* Dip both hoses into the tank.
 
|Step_Picture_00=Chauffe-eau_solaire___thermosyphon_IMG_5216.jpg
 
|Step_Picture_00=Chauffe-eau_solaire___thermosyphon_IMG_5216.jpg
 
|Step_Picture_01=Chauffe-eau_solaire___thermosyphon_IMG_5162.jpg
 
|Step_Picture_01=Chauffe-eau_solaire___thermosyphon_IMG_5162.jpg
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Fonctionnement
+
|Step_Title=How it works
|Step_Content=<br />
+
|Step_Content=
 
 
* Pour lancer la circulation, aspirer l’air du circuit par le tuyau de sortie d’eau chaude.
 
 
}}
 
}}
 
{{Notes
 
{{Notes
|Notes=
+
|Notes=*Hot water and solar heating R.Espic, J.P.Isoardi, M.Moreau Sedit
 +
*[http://www.onebus.fr/Face/ecs_solaire.pdf Very complete theoretical document (in French)] regarding sanitary hot water and thermal solar water heater, by Thierry Cabriol, Albert Pelissou et Daniel Roux
 +
*[https://www.new-learn.info/packages/tareb/docs/ecb/ecb_ch5_en.pdf European TAREB project report]
 +
* [https://lowtechlab.org/assets/files/rapport-experimentation-habitat-low-tech-low-tech-lab.pdf Low-tech Lab's Sustainable Habitat Project Report]
 
}}
 
}}
 
{{PageLang
 
{{PageLang

Version actuelle datée du 8 juin 2023 à 15:22

Prototype de avatarLow-tech Lab | Catégories : Habitat, Eau, Énergie, Hygiène

A very simple system for heating water using solar energy. This system works, without a pump, using only the thermosiphon effect.

Licence : Attribution (CC BY)

Introduction

Domestic hot water, which is used for household and toilet needs, represents a significant consumption.

  • In (drinking) water: the volume of water consumed is strongly influenced by the behaviour of the users. According to the magazine Plein soleil / C.N.R.S-EcoDev, in France, a standard type 4 dwelling (three bedrooms) uses 100 to 150 litres of hot water (at 60 [°C]) per day. However, there is a constant increase in the need for water, especially hot water, in the order of 3 to 4% per year (Gaz de France survey).
  • In energy: the heating of domestic water accounts for nearly 20% of final energy consumption in the residential sector (according to the Observatoire de l'énergie).

Turning solar energy into heat is simple and efficient. A thermal solar panel has an efficiency 3 to 4 times higher than a photovoltaic panel. However, electricity and fossil fuels are mostly used to heat water.

Solar water heating systems use solar panels, called collectors. This allows the heat from the sun to be collected and used to heat the water that is stored in a hot water tank.

There are two types of solar panels for water heating:

  • vacuum tubes;
  • flat collectors, which can be mounted on a wall or a roof.

Vacuum collectors are known to be more efficient because they suffer less leakage (thanks to the air vacuum in the tubes) than flat collectors. They are nevertheless more complicated to realize in low-tech.

We decided to test a plane-type sensor operating as a thermosiphon, i.e. without pumping system. n addition, we chose to heat the water directly, without using a heat transfer fluid that would transfer its calories to the water in the tank.

Étape 1 - Thermosyphon Theory

Our system has no pumping system. The water circulation is only done thanks to a thermodynamic phenomenon called thermosiphon.

The principle of the thermosiphon system is that cold water has a higher density than hot water because it is more compact. It is therefore heavier and sinking. However, all systems tend towards a state of thermodynamic equilibrium. There is a movement called thermal convection to mix hot and cold water.

For this reason, the solar collector is always mounted underneath the water storage tank, so that the cold water from the tank reaches the collector via a downhill water pipe. When the water in the collector heats up, the hot water rises naturally, pushed up by the cold water and returns to the tank. The cycle tank -> water pipe -> collector heats the water until it reaches an equilibrium temperature. The consumer can then use the hot water from the top of the tank.




Étape 2 - Frame construction

The measurements are given for information only. They have to be adapted according to the size of your window.

  • On the 85x85cm plywood plate, screw two 85cm cleats and two 72cm wooden strips to form a frame. Choose strips about 6 cm thick to have a little depth.
  • Check that your glass fits into the frame.
  • Add holds inside the frame so that you can rest the glass on it.
  • Drill two 6mm diameter holes on one side of the frame. These will be used to lead the copper pipes outwards.

Étape 3 - Isolation

In order to retain maximum heat inside the water heater, it is important that the frame is insulated as much as possible. This is not the case for this prototype.

Air leakage and thermal bridges must be avoided. We have therefore insulated the bottom of the frame.

- Cut cardboard (or other insulation) to fit the bottom of the frame perfectly.

- Cover the cardboard with 2 layers of aluminium foil. The purpose of this is to distribute the heat evenly over the surface in contact with the copper tube.




Étape 4 - Water circuit

In this system, there is no heat exchanger as in a conventional hot water tank. The water in the tank passes directly through the copper pipe and heats up on contact with it. We will therefore form a circuit in order to maximize the exchange surface between the pipe and the water.

  • Using a bending tool, form a circuit with the copper pipe.

Note: It is important to use a suitable tool to make a nice bend and not to make a bend in the pipe. At this diameter, the pipe tends to bend quickly and will eventually break.


  • Make sure to keep a good straight length at the ends and take them out through the 2 holes provided for this purpose in the frame.
  • In order to maximize the exchange surface between the circuit and the bottom of the frame covered with aluminium foil, fix the circuit with screws and hooks (see photos).

Étape 5 - Glass pose

  • Place the glass on the frame holds. Make sure that it is tightly fitted and sealed. If necessary, fill the gaps with cardboard, fabric or silicone for insulation.
  • To fix the glass to the frame, screw strips on the edges.


Étape 6 - Connection to the water tank

For the water tank, we have chosen a 30L waste bin with a lid. Ideally, the tank should be insulated to conserve heat.

  • Cut the copper pipes coming out of the frame leaving 2-3cm.
  • Attach a silicone or latex tube to each of the outlets using hose clamps. Make sure that the connection is airtight by blowing into the silicone/latex tubes when the circuit is filled with water, for example.

Note: Be careful not to over-tighten the hose clamps which will eventually tear the silicone/latex hoses.


  • Dip both hoses into the tank.



Étape 7 - How it works

Notes et références

Commentaires

Published