Dominik - module d'alimentation

Tutorial de avatarGirard15 | Catégories : Énergie, Outils

Ce tutoriel vient compléter le tutoriel "Dominik - serveur modulable autoalimenté en réemploi". Il a pour but de présenter la construction de A à Z d'un système modulable et mobile d'alimentation d'un appareil numérique.

Licence : Attribution (CC BY)

Introduction

Ce tutoriel est une partie d'un tutoriel plus général : " Dominik - serveur modulable autoalimenté en réemploi ". Dans ce tutoriel, nous verrons comment dimensionner une installation électrique DC de faible puissance, idéale pour recharger vos appareils numérique de tous types avec des énergies renouvelables.


⚙️ Difficulté : Moyen


⌚ Durée : 2h (+10h récupération de matériel)


💰 Coût : environ 45€
Bien que ce module puisse d'adresser à toute personne cherchant un moyen d'accès à de l'énergie hors-réseau, il est plus spécifiquement adapté aux personnes cherchant à héberger un serveur mobile, ou plus généralement à alimenter un système de faible puissance en courant continue dans un environnement sans réseau électrique fiable. Pour toute application autre que celle-ci, il sera nécessaire d'adapter vos choix de système de production et de conversion de puissance.


Un système complet d'accès au numérique de façon low-tech doit permettre aux utilisateurs de ne pas dépendre (ou le moins possible) du réseau électrique national, mais de pouvoir être tout de même être alimenté en énergie, et ceci de la façon la plus fiable et éco-responsable possible. Au regard de ces exigences, différents systèmes d'alimentation peuvent être envisagés :

  • Une alimentation classique au réseau électrique
  • Une auto-alimentation par système photovoltaïque
  • Une auto-alimentation par système éolien
  • Une auto-alimentation par un vélo-générateur électrique

Une analyse multi-critère hiérarchique (fichier choix_alim) nous a permis de définir le système photovoltaïque comme le plus pertinent pour ce projet. Cependant, il se peut qu'il en aille différemment pour vous.


Dans ce module, nous vous proposons alors :

  1. Une méthode de dimensionnement de votre installation
  2. Des astuces pour récupérer les composants nécessaires
  3. Un tutoriel de câblage de votre installation pas à pas

Étape 1 - Dimensionnement des éléments

  1. Schéma du circuit proposé (détail des composants dans la partie 2.2) : Image 1
  2. Pour définir les caractéristiques, trois solutions s'offrent à vous. Vous pouvez la définir empiriquement grâce à la méthode indiquée dans notre méthode de dimensionnement. Vous pouvez attendre nos résultats de performance après utilisation de notre système. Vous pouvez aussi vous baser sur notre exemple de dimensionnement si vous utilisez un smartphone dans dans conditions similaires au nôtres : Lors de notre test, un smartphone est resté en mode "4G et partage uniquement" avec écran éteint et utilisation du partage "standard" sur une période de 24h et 24 minutes. Notre smartphone est passée de 80% à 15%, soit 7,51Wh de consommé en 24,4h. La puissance moyenne est donc de 0,31W. Nous nous plaçons dans le cas du jour le plus court de l'année à Grenoble avec une inclinaison de panneau de 66% orienté sud, en supposant l'absence de masque. L'IGP est de 2720 Wh/m²/jour. Nous prenons un temps d'autonomie minimum de 40h (2 nuit et 1 jour complet sans soleil en hiver), et un temps de recharge maximal de 1 jour, soit 8h pour décembre. Les autres valeurs importantes sont choisies comme celles du calculateur (1.3). Grâce au calculateur, nous obtenons les résultats suivants : Capacité de batterie : 12.3 Wh Surface de panneau : 0,044 m² soit un panneau de 30 cm par 15 cm Puissance minimal du régulateur : 4,4 W Section de câble : 1,5 mm²
- Une approche théorique est à intérêt limité. Nous avons essayé cette approche au début, mais les données que vous trouverez sur le net varient énormément selon les modèles, et ne prennent pas du tout en compte les conditions environnementales et l'état du smartphone. - Ce dimensionnement ne prend pas en compte la possibilité de charger d'autres téléphones. Il faudra prendre ça en compte dans le dimensionnement si vous en avez besoin.

Si vous hébergez votre serveur sur un autre support ou que vous vous intéressez à un autre système de faible puissance

  1. Schéma du circuit proposé (détail des composants dans la partie 2) : Image 2
  2. Le convertisseur dépend de la forme d'alimentation demandée par le dispositif électronique. Pour définir les caractéristiques techniques des composants, il faut utiliser la méthode de dimensionnement proposée en 1.3.

Méthode de calcul de dimensionnement

Vous trouverez un tutoriel pas à pas dans le fichier : "Calcul_dimensionnement"



Étape 2 - Astuces de récupération du matériel

Encore une fois, cette partie s'applique plus aux utilisateurs cherchant à héberger un serveur mobile, mais la plupart des composants peuvent être généralisés à n'importe quelle installation solaire de faible puissance.
Voici quelques TIPS pour récupérer les différents composants nécessaire à votre installation. pistes sont à explorer :
  • Les grandes enseignes de votre ville/village adapté à ce que vous cherchez
  • Les magasins de récupération/ressourceries
  • Les sites de seconde main entre particuliers
  • Les bennes de chantier
  • Les zones de gratuité / lieux de dépôt fréquents
  • Les groupes réseau sociaux

Voici ensuite des conseils plus spécifiques pour notre cas d'utilisation

Les panneaux solaires

Si vous ne trouvez pas facilement de petits panneaux solaires auprès de votre entourage, site de seconde main ou autres contacts (pro, associatif, etc), certaines entreprises qui changent leurs panneaux donnent les anciens, qui parfois marchent bien.

Le régulateur

Il existe 2 principaux types de régulateurs de panneaux solaire (https://allo.solar/base-de-connaissances/quelles-differences-entre-pwm-et-mppt.html):

  • Les MPPT (Maximal Power Point Tracker) : qui adapte en permanance la tension du panneau solaire pour une récupération maximale de l'énergie tout en permettant une tension adaptée pour la batterie en sortie. Ces dispositifs sont assez chers.
  • Les PMW (Pulse With Modulation) : qui adaptent la tension du panneau solaire à celle nécessaire pour charger la batterie. Le protocole est moins performant mais le dispositif est moins cher. Cela reste amplement satisfaisant pour notre cas pratique d'électronique de faible puissance.

Vous pouvez peut-être en trouver sur des sites d'annonces de seconde main (cela a été notre cas pour un PMW à 12 euros). Vous pouvez également en acheter un neuf dans des magasins d'électronique.


Bien lire la notice d'utilisation. Par exemple, sur certains PWM, il faut absoluement brancher la batterie avant le panneau solaire.




Étape 3 - Tutoriel de câblage pas à pas

Principe

Lorsque vous aurez récupéré l'ensemble du matériel, il vous faudra réaliser les connections. Il est très dangereux de connecter les fils directement en les soudant entre eux, car vous n'aurez pas la possibilité de les déconnecter en cas de problèmes. Il faut alors trouver des systèmes de connexion adaptés. Pour cela trois méthodes possibles :

  1. Si les systèmes de connections matchent, il suffit de les laisser ainsi.
  2. Si ils ne matchent pas du tout entre eux, la méthode consiste à découper les connections qui ne matchent pas et les remplacer par des systèmes cosse-domino (3.3)
  3. Si certains systèmes de connexion matchent mais ne sont pas en "face-à-face", vous pouvez les récupérer et les interchanger (3.4)

Système cosse-domino

Imaginons que les composants que vous avez récupérés ont tous des systèmes de connexion incompatibles entre eux, comme sur l'exemple de l'image 1.

Une solution pour vous est la suivante :

  • Couper tous les systèmes de connexion
  • Dénuder les bouts de câble concernés Image 2
  • Ajouter une cosse grâce à une pince de serrage Image 3
  • Relier entre eux ces câbles via un domino Image 4

Interchanger les systèmes de connexion

Il est cependant possible que certains systèmes soient compatibles entre eux mais placés au mauvais endroit, comme sur l'exemple de l'image 6.

Ici, il est possible d'interchanger le système de connexion Type A - M du panneau solaire et Type B - M su régulateur. Pour ce faire :

  • Couper les systèmes de connexion concernés en laissant une marge de câble et dénuder les câbles concerné. Image 7
  • Échanger les systèmes de connexion concernés.
  • Souder les câbles à leur nouveau système de connexion associé. Vous trouverez un tutoriel ici : https://www.youtube.com/watch?v=ZMP2PCkPAgk
  • Ajouter une gaine thermorétractable ou du scotch noir pour isoler la soudure et sécuriser le circuit.
Il sera parfois utile d'opérer cette méthode pour allonger des câbles trop petits.

Protocole de test

Une fois votre produit fini, il est utile de le tester pour être sûr qu'il marche bien. Nous voulons voir si le système répond globalement aux attente, et non vérifier l'état physique de chaque composant. La démarche est la suivante :

  1. Le premier test consiste à brancher l'installation, mettre le panneau au soleil, et brancher un téléphone portable pour s'assurer que le circuit est fonctionnel (test 1).
  2. Vider la batterie de la manière que vous souhaitez.
  3. Par un jour ensoleillé, sans nuage : brancher la batterie au panneau et à votre dispositif électrique. Relever le temps que la batterie met à se charger qu'on notera T (test 2).
  4. Une fois la batterie chargée, noter la temps qu'elle met à se décharger avec votre dispositif électrique en mode de fonctionnement normal (smartphone en mode serveur dans notre cas) (test 3). Si le temps de décharge est trop court, cela signifie que votre batterie est sous-dimensionnée. Si le temps de décharge est beaucoup trop long, cela signifie que votre batterie est sûr-dimensionnée, ce n'est pas forcément un problème.
  5. Sur le calculateur Logiciel Calsol (partie ressource solaire), relever l'IGP du mois de votre test, et l'IGP du mois de décembre, avec l'orientation adéquate de votre panneau. On notera f le facteur (IGPmois/IGPdécembre).
  6. Multiplier T par f. Si le résultat est inférieur à votre temps de charge espéré, le système n'est pas assez performant. Il se peut que votre panneau solaire ne soit pas assez puissant, ou que votre batterie n'a pas assez de capacité. Nous allons déterminer quel est notre cas par la suite.
  7. Si vous êtes dans cette situation, videz à nouveau la batterie, et rechargez la en mettant le panneau au soeil pendant un temps T'=Tcharge*f, Tcharge étant le temps de charge que vous vous étiez fixé pendant le dimensionnement. Refaites le test 3. Si le temps de décharge est acceptable, cela signifie que la batterie est sur-dimensionnée mais le panneau solaire n'est pas sous-dimensionné, vous pouvez accepter cette installation. Si le temps de décharge est toujours trop court, cela signifie que votre panneau solaire est sous-dimensionné, il faudra en choisir un plus puissant.

Étape 4 - Afficheur de batterie (optionnel)

Il est possible si vous le souhaitez d'ajouter un afficheur de charge de la batterie. Il existe plusieurs moyens pour en obtenir un :

  1. Utiliser un voltmètre et se référer à une courbe de charge correspondante à la batterie
  2. Fabriquer soit-même un petit indicateur LED à palier, à l’aide d’un tutoriel
  3. Fabriquer un contrôleur avec écran LCD à l’aide d’une carte Arduino
  4. Acheter un contrôleur dans le commerce

Dans notre cas, nous avons décidé de fabriquer l'afficheur LED à palier. Vous trouverez le circuit en images et le tutoriel sur ce site : https://sonelec-musique.com/electronique_realisations_indic_niv_bat_001.html?fbclid=IwAR1JXfPzFzkxxj6NOEgMRwh5fvlxkbU-eR27rKnw-7GzGvmIYzOCCTx6dD0


Pour régler le potentiomètre, appliquer la tension souhaitée à l'aide d'un générateur, et tourner la vis du potentiomètre jusqu'au switch des LED.


Commentaires

Draft