Prototype de Low-tech Lab | Catégories : Habitat, Énergie
Produces natural gas and fertilizer from our organic waste.
Produces natural gas and fertilizer from our organic waste.
biogaz, gaz naturel, digestat, organique, méthaniseur, biodigesteur, pouvoir méthanogène, autonomie, Low-tech Tour France en fr 1
A biodigestor is a solution to convert organic waste into fuel gas (biogas) and fertilizer (digestate). The biodigestor particularity is that digestion is done thanks to bacterias in an environment deprived from any oxygen. This situation is called anaerobic fermentation.
Biogas is a mix of different gases, containing mainly methane, which can be used for gas cookers, boilers or as fuel for engines.
Methanogen fermentation also exists in nature. For example, it happens in swamps when organic matter is decomposed underwater.
Biogas domestication happened in the beggining of the XIXth century, and the variety of biodigestors have considerably increased since then. They are particularly present in developing tropical countries, where farmers become autonomous in energy thanks to biogas production based on organic waste. Heat being an important catalyst of this reaction, small units are economically interesting in this area.
In France and other industrialized countries, the cost of energy being very low compared to workforce cost, only few small biodigestor units exist. However, many industrial units are present in wastewater treatment plants or around big breeding farms.
Different kind if biodigestors exist. They can be continuous or discontinuous, and also have different operation temperatures (psychrophilic : 15-25°C, mesophilic : 25-45°C or thermophilic : 45 – 65°C). In this tutorial, we are studying continuous mesophilic biodigestors à 38°C, which are the most commonly used in temperate regions.
The main feature of this system is its similarity to a digestive system. It also needs a certain temperature to be efficient, requires bacterias and receives food regularly.
In a compost, under aerobic conditions, decomposition of organic matter produces gas (H2S, H2, NH3) and an important amount of heat. Only decomposition deprived from air produces methane. It is one of the reasons why fermentation happens in a sealed tank.
In this tutorial, we will present the different components of a biodigestor (matter circuit and gas circuit) and how to use it.
This documentation realised with the association Picojoule describes fabrication of one of their micro-methanisation protypes. It does not provide full cooking gas autonomy but is a good introduction to methanisation. Hélie Marchand's half-burried digestor has a greater capacity : Biodigesteur.
These explanations are largely inspired from the work of Bertrand Lagrange in its books Biométhane 1 and 2, that we strongly recommand !
This work is free and open, do not hesitate to clarify and complete it based on your knowledge and experience.
Youtube
Matter circuit
Gas circuit
For a good digestion, at 38°C, the organic matter must stay 30 days in the biodigestor. We will size the digestor volume based on this duration and on regular inputs.
Let's take an example: if the regular input is 2L per day, as the matter must stay at least 30 days, the digestor volume must be at least 60 liters.
Degradation by the bacterias takes place in the digestor. The needed bacterias to produce methane are called methanogen bacterias. They grow in an environment deprived from oxygen, called an anaerobic environment. To remove organic matter from oxygen, it needs to be immerged into water.
Use teflon and planar joints on each side to seal the system.
The entry of the system will be the biodigestor mouth. The installation will first be done to verify dimensions of the system, and then will be dissasembled and definitively glued.
The overflow represents the end of the digestive system. Each time the system is fed, the same volume of digestate leaves the digestor. To make maintenance easier, a low exit in created. It allows draining of the digestor.
The second part will be continued vertically, until the top of the biodigestor, using 3 45° sleeves, again to prevent blockage of the system.
If the blank assembly is satisfaying, we will now glue PVC components together :
Then we will test the sealing :
This kind of biodigestor is mesophile, which means that bacterias develop between 25°C ans 45°C, ideally at 38°C. Unlike compost, biodigestion create only few heat. To reach these temperatures, heat will have to be provided to the system. It is possible to heat by different means :
It our case, given the small volume of the system, we are using a bedwarmer placed below the digestor.
To prevent the digestor from loosing energy, it is important to provide a proper isolation, so that only few heat has to be provided. In addition, a good isolation limits temperature variations, to which bacterias are very sensitive. Many differents ways exist for isolation. We chose to use corkboards, but is also possible to use straw for example, which is very cheap and provides good isolation.
We have presented the organic matter circuit, from the mouth to the digestate production. One of the main interests of th biodigestor is that it also produces methane. In this part, we will study the different components of the gas circuit, necessary to ensure a good production and purification of the fuel.
In the digestor, bacterias will produce biomethane as they degradate the organic waste. In variable proportions, it is composed of :
There can be also traces of hydrogen, oxygen, carbon monoxyde, nitrogen, and other gases in very small quantities.
Methane, CH4, belongs to the hydrocarbons family CnH2n+2, as propane (C3H8) or (C4H10). It is very light (d=0,55), and does not accumulate on the ground, unlike butane and propane, which decreases risks of explosion. Natural gas is composed mainly by methane.
To become liquid, making it easier to transport, methane has to be cooled to -165°C or compressed at a pressure of 400bars. This is only possible with industrial means, so in our case we will keep it at a gaseous state.
In terms of mass, it is the best fuel for thermic energy (12 000 Kcal/kg), but itis also the most voluminous.
Our objective is to separate methane from other gas compounds.
Its proportion depends on the bacterian reactions, the temperature and the organic waste. CO2 disturbs combustion, but does not prevent it.
The easiest is to wash the gas with water. Carbon dioxyde is very soluble (878 cm3/l at 20°C), unlike methane (34 cm3/l). This water carrying CO2 can be used for agriculture irrigation, or for algeas farming such as spirulina.
It is advisable to have a minimum of water when combustion happens, as it already produces a lot. In addition, condensation in pipes risks to block the lower parts of the gas circuit. To remove water vapour :
The bubbler reservoir can play this role of water collector if it placed at the lowest of the gas circuit.
Hydrogen sulphide (H2S) is burnable but produces sulfuric acid, which is highly corrosive. A good pH balance in the biodigestor avoids most of hydrogen sulphide production. To eliminate it, biomethane will go through iron oxide, or iron straw, that will be regenerated by exposing it to the air (sulfur will leave). Coal or clay balls can also serve as filters for hydrogen sulphide.
Dans le digesteur, il est préférable d’avoir une fermentation qui se déroule à pression minimum. Pour cela, le gaz devra être évacué à mesure de son dégagement. A moins d’avoir une consommation continuelle et régulière de gaz, on devra disposer d’une réserve fournissant le gaz aux « pointes » de consommation et le stockant le reste du temps.
Les réservoirs souples de type « vessie » sont intéressants. A l’inverse, utiliser un récipient indéformable peut être dangereux : il faut être en mesure de vider l’air contenu à l’intérieur avant d'y introduire du méthane, le mélange des deux gaz peut être explosif.
Partout où on craint un retour de flamme, placer une boule de paille de fer ou de cuivre sur le parcours du gaz qui, par conduction thermique, étouffe la combustion en abaissant la température. Il ne faut cependant pas trop tasser la paille métallique dans les tuyaux au risque de limiter le bon passage du gaz.
Dans notre cas, pour éviter un retour de flamme vers le digesteur et surtout le ballon de stockage, nous installons de la paille de fer dans le tuyau au plus proche de la gazinière.
Comme il est mélangé à du dioxyde de carbone non combustible, le biométhane a un pouvoir calorifique nettement plus faible que le propane, le butane ou le méthane pour un même volume.
Les appareils qui fonctionnent avec ces gaz ont donc une plus grande admission d’air qu’une gazinière au biométhane.
Pour adapter les bruleurs standards à du biométhane :
OU
ATTENTION : les flammes de méthane sont moins visibles que celle de propane ou butane, il faut faire attention à ne pas se bruler au contact de la gazinière.
Le biométhane peut également être utilisé dans des lampes à gaz, des chaudières ou des moteurs à explosions : groupes électrogènes, engins agricoles, voitures…
Le biodigesteur et le stockage sont à pression atmosphérique pour ne pas ralentir le travail bactérien. Une gazinière biométhane fonctionne avec un gaz à 10 mbar, pour cela :
OU
Chaque raccord entre un élément et un tuyau de gaz doit être sécurisé avec un collier de serrage.
Une fois l’ensemble du circuit monté, faire un test d’étanchéité, comme pour le circuit matière, en le mettant sous pression et en aspergeant de l’eau savonneuse sur les jonctions. Si des bulles apparaissent, il y a une fuite.
Le biodigesteur est un système vivant, composé de millions de bactéries, il faut donc lui porter une attention particulière.
Dans l’idéal le biodigesteur est nourri tous les jours. Il est possible de descendre jusqu’à une fois par semaine. Si le volume de matière à transformer est important, il vaut mieux le répartir sur plusieurs « repas ».
Il est important de broyer les aliments (au couteau, mixeur …) et d’y ajouter leur poids en eau pour :
Le biodigesteur est un complément très intéressant au composteur. En effet un compost a pour objectif de créer de l’humus, pour cela il a besoin d’un fort rapport carbone/azote, (entre 20 et 30), avec principalement de la cellulose et des composés ligneux. Un surplus de matière organique putrescible déstructure le compost.
A l’inverse, les matières humides et putrescibles sont les bienvenues dans un biodigesteur (fruits et légumes en décomposition, épluchures…). Il faut limiter les matières fibreuses, sèches et dures voire les éviter dans un petit digesteur. Ils risquent de boucher la circulation de matière, ils ont également tendance à flotter et à former une écume très difficile à faire disparaitre et, en formant des croutes ou en se déposant au fond, ils utilisent de la place inutilement.
Une alimentation très azotée est idéale, l’azote n’est que très peu présent dans le biométhane mais il participe fortement à sa synthèse via la stimulation de l’activité bactérienne. De plus il permet d’obtenir un fertilisant très riche avec le digestat.
Il est important d’apporter du « vert » au régime du digesteur, si les épluchures ou diverses fanes ne suffisent pas, de l’herbe tondue et broyée complète bien.
Les produits animaliers (viandes, lait, œufs…) doivent être évités dans un biodigesteur, ne montant pas en température comme un compost il ne détruit pas les germes pathogènes.
Les huiles alimentaires ont un très fort pouvoir méthanogène (780 litres de méthane par kilo d’huile !) mais acidifie le biodigesteur. S’il devient trop acide les bactéries vont mourir. A consommer avec modération.
L’eau de cuisson permet de réchauffer le système tout en fluidifiant le transit. Elle est également chargée en amidon (pommes de terre, céréales, pâtes, riz …) apprécié par les bactéries.
L’urine peut être utilisée régulièrement. Les excréments sont acceptés en petites doses mais ils ont un faible pourvoir méthanogène, une grande partie de leur valeur énergétique a été absorbée pendant la digestion.
En milieu acide, l’activité enzymatique des bactéries est bloquée. Cette acidité est surtout due à l’accumulation d’acides organiques. En milieu basique, les fermentations produisent de l’hydrogène sulfuré (H2S) et de l’hydrogène (H2). La digestion peut s’effectuer entre des pH de 6,6 et 7,6 avec un optimum entre 7 et 7,2.
Nous avons vu précédemment que les excréments ont un faible pouvoir méthanogène car déjà digérés. Ils restent cependant importants pour lancer l’activité bactérienne dans le digesteur.
Une vache, à travers ses rots, génère à elle seule entre 60 et 200 litres de biogaz par jour. Nous allons donc récupérer une partie de la flore intestinale du ruminant dans … ses excréments.
Pour lancer la fermentation bactérienne dans le digesteur :
Si l’activité du biodigesteur est arrêtée à cause d’une longue période sans alimentation il faut à nouveau l’ensemencer de la même manière.
La stabilisation de la digestion jusqu’à une production régulière d’un gaz combustible peut durer plusieurs semaines, il est bon de ne pas trop perturber son alimentation.
Le digestat issu de biodigesteurs domestiques une fois stabilisé est un fertilisant liquide très riche en azote et minéraux.
Il peut être appliqué dilué à 10% sur toutes les plantes avec un intervalle d’un mois entre chaque utilisation.
Si des produits animaliers (viandes, lait, œufs…) font partis du régime du biodigesteur il ne faut pas appliquer de digestat sur les fruits et légumes mangés crus (fraises, salades, carottes…). Il trouvera son utilisation dans les vergers ou sur les plantes non-alimentaires.
Published
Vous avez entré un nom de page invalide, avec un ou plusieurs caractères suivants :
< > @ ~ : * € £ ` + = / \ | [ ] { } ; ? #