Prototype de Low-tech Lab | Catégories : Habitat, Énergie
Produces natural gas and fertilizer from our organic waste.
Produces natural gas and fertilizer from our organic waste.
biogaz, gaz naturel, digestat, organique, méthaniseur, biodigesteur, pouvoir méthanogène, autonomie, Low-tech Tour France en fr 1
A biodigestor is a solution to convert organic waste into fuel gas (biogas) and fertilizer (digestate). The biodigestor particularity is that digestion is done thanks to bacterias in an environment deprived from any oxygen. This situation is called anaerobic fermentation.
Biogas is a mix of different gases, containing mainly methane, which can be used for gas cookers, boilers or as fuel for engines.
Methanogen fermentation also exists in nature. For example, it happens in swamps when organic matter is decomposed underwater.
Biogas domestication happened in the beggining of the XIXth century, and the variety of biodigestors have considerably increased since then. They are particularly present in developing tropical countries, where farmers become autonomous in energy thanks to biogas production based on organic waste. Heat being an important catalyst of this reaction, small units are economically interesting in this area.
In France and other industrialized countries, the cost of energy being very low compared to workforce cost, only few small biodigestor units exist. However, many industrial units are present in wastewater treatment plants or around big breeding farms.
Different kind if biodigestors exist. They can be continuous or discontinuous, and also have different operation temperatures (psychrophilic : 15-25°C, mesophilic : 25-45°C or thermophilic : 45 – 65°C). In this tutorial, we are studying continuous mesophilic biodigestors à 38°C, which are the most commonly used in temperate regions.
The main feature of this system is its similarity to a digestive system. It also needs a certain temperature to be efficient, requires bacterias and receives food regularly.
In a compost, under aerobic conditions, decomposition of organic matter produces gas (H2S, H2, NH3) and an important amount of heat. Only decomposition deprived from air produces methane. It is one of the reasons why fermentation happens in a sealed tank.
In this tutorial, we will present the different components of a biodigestor (matter circuit and gas circuit) and how to use it.
This documentation realised with the association Picojoule describes fabrication of one of their micro-methanisation protypes. It does not provide full cooking gas autonomy but is a good introduction to methanisation. Hélie Marchand's half-burried digestor has a greater capacity : Biodigesteur.
These explanations are largely inspired from the work of Bertrand Lagrange in its books Biométhane 1 and 2, that we strongly recommand !
This work is free and open, do not hesitate to clarify and complete it based on your knowledge and experience.
Youtube
Matter circuit
Gas circuit
For a good digestion, at 38°C, the organic matter must stay 30 days in the biodigestor. We will size the digestor volume based on this duration and on regular inputs.
Let's take an example: if the regular input is 2L per day, as the matter must stay at least 30 days, the digestor volume must be at least 60 liters.
Degradation by the bacterias takes place in the digestor. The needed bacterias to produce methane are called methanogen bacterias. They grow in an environment deprived from oxygen, called an anaerobic environment. To remove organic matter from oxygen, it needs to be immerged into water.
Use teflon and planar joints on each side to seal the system.
The entry of the system will be the biodigestor mouth. The installation will first be done to verify dimensions of the system, and then will be dissasembled and definitively glued.
The overflow represents the end of the digestive system. Each time the system is fed, the same volume of digestate leaves the digestor. To make maintenance easier, a low exit in created. It allows draining of the digestor.
The second part will be continued vertically, until the top of the biodigestor, using 3 45° sleeves, again to prevent blockage of the system.
If the blank assembly is satisfaying, we will now glue PVC components together :
Il faut à la suite tester l’étanchéité :
Ce type de biodigesteur est mésophile, c’est-à-dire que les bactéries se développent entre 25°C et 45°C, idéalement à 38°C. Contrairement au compostage, la biodigestion ne génère que très peu de chaleur. Pour atteindre ces températures de travail il faut donc apporter de la chaleur au système. Il est possible de chauffer de nombreuses manières :
Dans notre cas, étant donné le petit volume du système, nous utilisons un chauffe-lit positionné sous le digesteur
Pour éviter que le biodigesteur soit énergétiquement déficitaire, il est important de très bien l’isoler pour lui apporter un minimum d’énergie calorifique. De plus, une bonne isolation permet de limiter les variations de températures auxquelles les bactéries sont très sensibles. Il est possible d’isoler de nombreuses façons. Nous avons isolé l’enceinte avec des plaques de liège. Il est possible d’utiliser de la paille, très bon isolant à bon marché.
Nous venons d’étudier le circuit de matière organique, de l’entrée à la production du digestat. Un des grands intérêts du biodigesteur est qu’il produit également du biométhane. Dans cette partie nous étudierons les différents éléments du circuit de gaz pour la bonne production et la purification du combustible.
C’est dans le digesteur, en dégradant les matières organiques que les bactéries produisent le biométhane. Il est composé de plusieurs gaz en proportions variables, dont :
On y trouve également des traces d’hydrogène, d’oxygène, de monoxyde de carbone, d’azote et d’autre gaz présents en très faibles quantités.
Le méthane, CH4, est un carbure d’hydrogène de la famille CnH2n+2 tout comme le propane (C3H8) ou le butane (C4H10). Il est très léger (d=0,55), il ne s’accumule donc pas au sol, au contraire du butane et du propane et diminue les dangers d’explosions. Le gaz naturel est composé principalement de méthane.
Pour être liquéfié, en vue d’un transport plus commode, il doit être refroidi à -165°C ou comprimé à 400 bars. Cela n’est possible qu’avec des moyens industriels, on le conserve donc dans notre cas à l’état gazeux.
Par rapport à la masse, c’est le meilleur carburant sur le plan calorifique (12 000 Kcal/kg), mais c’est le plus volumineux.
Dans cette application, c’est le méthane qui nous intéresse, nous allons voir comment épurer le biométhane des autres composés.
La proportion varie en fonction des réactions bactériennes, de la température et des éléments à digérer. Le CO2 gène la combustion mais ne l’empêche pas.
Le plus simple est de procéder à un lavage du gaz à l’eau. Le dioxyde de carbone est très soluble (878 cm3/l à 20°C) alors que le méthane l’est très peu (34 cm3/l). Cette eau chargée de CO2 peut être utilisée pour l’irrigation ou pour la culture d’algues comme la spiruline.
Il est souhaitable d’avoir le minimum d’eau à la combustion, celle-ci en dégageant déjà une grande quantité. De plus avec la condensation dans les tuyaux il y a un risque d’obstruction dans les points bas du circuit de gaz :
Le réservoir-bulleur peut jouer le rôle de collecteur d’eau s’il est placé en bas du circuit de gaz.
L’hydrogène sulfuré (H2S) est combustible mais fortement corrosif par la production d’acide sulfurique. Sa présence est nuisible et nous l’éviterons au maximum par un bon équilibre du pH du biodigesteur. Pour l’éliminer, on fait passer le biométhane à travers de l’oxyde de fer ou de la paille de fer qui sera régénérée par exposition à l’air libre avec départ de souffre. Le charbon de bois ou les billes d’argile peuvent également servir de matériaux filtrant.
Dans le digesteur, il est préférable d’avoir une fermentation qui se déroule à pression minimum. Pour cela, le gaz devra être évacué à mesure de son dégagement. A moins d’avoir une consommation continuelle et régulière de gaz, on devra disposer d’une réserve fournissant le gaz aux « pointes » de consommation et le stockant le reste du temps.
Les réservoirs souples de type « vessie » sont intéressants. A l’inverse, utiliser un récipient indéformable peut être dangereux : il faut être en mesure de vider l’air contenu à l’intérieur avant d'y introduire du méthane, le mélange des deux gaz peut être explosif.
Partout où on craint un retour de flamme, placer une boule de paille de fer ou de cuivre sur le parcours du gaz qui, par conduction thermique, étouffe la combustion en abaissant la température. Il ne faut cependant pas trop tasser la paille métallique dans les tuyaux au risque de limiter le bon passage du gaz.
Dans notre cas, pour éviter un retour de flamme vers le digesteur et surtout le ballon de stockage, nous installons de la paille de fer dans le tuyau au plus proche de la gazinière.
Comme il est mélangé à du dioxyde de carbone non combustible, le biométhane a un pouvoir calorifique nettement plus faible que le propane, le butane ou le méthane pour un même volume.
Les appareils qui fonctionnent avec ces gaz ont donc une plus grande admission d’air qu’une gazinière au biométhane.
Pour adapter les bruleurs standards à du biométhane :
OU
ATTENTION : les flammes de méthane sont moins visibles que celle de propane ou butane, il faut faire attention à ne pas se bruler au contact de la gazinière.
Le biométhane peut également être utilisé dans des lampes à gaz, des chaudières ou des moteurs à explosions : groupes électrogènes, engins agricoles, voitures…
Le biodigesteur et le stockage sont à pression atmosphérique pour ne pas ralentir le travail bactérien. Une gazinière biométhane fonctionne avec un gaz à 10 mbar, pour cela :
OU
Chaque raccord entre un élément et un tuyau de gaz doit être sécurisé avec un collier de serrage.
Une fois l’ensemble du circuit monté, faire un test d’étanchéité, comme pour le circuit matière, en le mettant sous pression et en aspergeant de l’eau savonneuse sur les jonctions. Si des bulles apparaissent, il y a une fuite.
Le biodigesteur est un système vivant, composé de millions de bactéries, il faut donc lui porter une attention particulière.
Dans l’idéal le biodigesteur est nourri tous les jours. Il est possible de descendre jusqu’à une fois par semaine. Si le volume de matière à transformer est important, il vaut mieux le répartir sur plusieurs « repas ».
Il est important de broyer les aliments (au couteau, mixeur …) et d’y ajouter leur poids en eau pour :
Le biodigesteur est un complément très intéressant au composteur. En effet un compost a pour objectif de créer de l’humus, pour cela il a besoin d’un fort rapport carbone/azote, (entre 20 et 30), avec principalement de la cellulose et des composés ligneux. Un surplus de matière organique putrescible déstructure le compost.
A l’inverse, les matières humides et putrescibles sont les bienvenues dans un biodigesteur (fruits et légumes en décomposition, épluchures…). Il faut limiter les matières fibreuses, sèches et dures voire les éviter dans un petit digesteur. Ils risquent de boucher la circulation de matière, ils ont également tendance à flotter et à former une écume très difficile à faire disparaitre et, en formant des croutes ou en se déposant au fond, ils utilisent de la place inutilement.
Une alimentation très azotée est idéale, l’azote n’est que très peu présent dans le biométhane mais il participe fortement à sa synthèse via la stimulation de l’activité bactérienne. De plus il permet d’obtenir un fertilisant très riche avec le digestat.
Il est important d’apporter du « vert » au régime du digesteur, si les épluchures ou diverses fanes ne suffisent pas, de l’herbe tondue et broyée complète bien.
Les produits animaliers (viandes, lait, œufs…) doivent être évités dans un biodigesteur, ne montant pas en température comme un compost il ne détruit pas les germes pathogènes.
Les huiles alimentaires ont un très fort pouvoir méthanogène (780 litres de méthane par kilo d’huile !) mais acidifie le biodigesteur. S’il devient trop acide les bactéries vont mourir. A consommer avec modération.
L’eau de cuisson permet de réchauffer le système tout en fluidifiant le transit. Elle est également chargée en amidon (pommes de terre, céréales, pâtes, riz …) apprécié par les bactéries.
L’urine peut être utilisée régulièrement. Les excréments sont acceptés en petites doses mais ils ont un faible pourvoir méthanogène, une grande partie de leur valeur énergétique a été absorbée pendant la digestion.
En milieu acide, l’activité enzymatique des bactéries est bloquée. Cette acidité est surtout due à l’accumulation d’acides organiques. En milieu basique, les fermentations produisent de l’hydrogène sulfuré (H2S) et de l’hydrogène (H2). La digestion peut s’effectuer entre des pH de 6,6 et 7,6 avec un optimum entre 7 et 7,2.
Nous avons vu précédemment que les excréments ont un faible pouvoir méthanogène car déjà digérés. Ils restent cependant importants pour lancer l’activité bactérienne dans le digesteur.
Une vache, à travers ses rots, génère à elle seule entre 60 et 200 litres de biogaz par jour. Nous allons donc récupérer une partie de la flore intestinale du ruminant dans … ses excréments.
Pour lancer la fermentation bactérienne dans le digesteur :
Si l’activité du biodigesteur est arrêtée à cause d’une longue période sans alimentation il faut à nouveau l’ensemencer de la même manière.
La stabilisation de la digestion jusqu’à une production régulière d’un gaz combustible peut durer plusieurs semaines, il est bon de ne pas trop perturber son alimentation.
Le digestat issu de biodigesteurs domestiques une fois stabilisé est un fertilisant liquide très riche en azote et minéraux.
Il peut être appliqué dilué à 10% sur toutes les plantes avec un intervalle d’un mois entre chaque utilisation.
Si des produits animaliers (viandes, lait, œufs…) font partis du régime du biodigesteur il ne faut pas appliquer de digestat sur les fruits et légumes mangés crus (fraises, salades, carottes…). Il trouvera son utilisation dans les vergers ou sur les plantes non-alimentaires.
Published
Vous avez entré un nom de page invalide, avec un ou plusieurs caractères suivants :
< > @ ~ : * € £ ` + = / \ | [ ] { } ; ? #