Dimensionner la récupération d'eau de pluie pour être autonome

Tutorial de avatarAurelpere | Catégories : Eau

Dimensionner la récupération d'eau de pluie hors réseau

Licence : Attribution (CC BY)

Introduction

Dans des cas où on souhaite être 100% autonome hors réseau, la question de l'eau est essentielle.

C'est d'ailleurs le premier élément à considérer par exemple dans les démarches de

permaculture (phase d'observation).

J'ai initialement fait les calculs ci dessous pour "autonomiser" un mobile home avec l'idée

d'utiliser des modules photovoltaïques dans un assemblage récupérateur d'eau,

comme le proposait le concept ulta chaata (https://www.facebook.com/weultachaata/?locale=fr_FR

et https://fr.futuroprossimo.it/2023/03/ulta-chaata-ombrello-magico-che-puo-dare-acqua-e-luce-allindia/)

avant d'être récupérée à los angeles.

On peut s'interroger sur la façon adéquate de dimensionner des installations pour récupérer de

l'eau de pluie.

Pour cela, on peut utiliser les données de météo france afin d'avoir un regard rétrospectif

sur les précipitations saisonnières et ajuster ainsi les dimensions des récupérateurs.

Étape 1 - Prérequis logiciel

Dans ce tuto, on utilise des données météos synop disponibles ici :

http://data.cquest.org/meteo-france/synop/

dont vous trouverez la déscription ici:

http://data.cquest.org/meteo-france/synop/doc_parametres_synop_168.pdf


Télécharger tous les fichiers csv des années et mois à partir desquels vous souhaitez que les calculs soient effectués, placer les dans un repertoire de votre choix et dezipper les (format archive gz). Placer également dans ce répertoire le fichier processing.py contenant le code partagé dans ce tutoriel.


exemple en ligne de commande linux debian pour télécharger et dézipper tous les csv de l'année 2020 dans un repertoire ~/synop:



cd ~

mkdir -p synop && cd synop


wget http://data.cquest.org/meteo-france/synop/synop.202001.csv.gz && gzip -d synop.202001.csv.gz

wget http://data.cquest.org/meteo-france/synop/synop.202002.csv.gz && gzip -d synop.202002.csv.gz

wget http://data.cquest.org/meteo-france/synop/synop.202003.csv.gz && gzip -d synop.202003.csv.gz

wget http://data.cquest.org/meteo-france/synop/synop.202004.csv.gz && gzip -d synop.202004.csv.gz

wget http://data.cquest.org/meteo-france/synop/synop.202005.csv.gz && gzip -d synop.202005.csv.gz

wget http://data.cquest.org/meteo-france/synop/synop.202006.csv.gz && gzip -d synop.202006.csv.gz

wget http://data.cquest.org/meteo-france/synop/synop.202007.csv.gz && gzip -d synop.202007.csv.gz

wget http://data.cquest.org/meteo-france/synop/synop.202008.csv.gz && gzip -d synop.202008.csv.gz

wget http://data.cquest.org/meteo-france/synop/synop.202009.csv.gz && gzip -d synop.202009.csv.gz

wget http://data.cquest.org/meteo-france/synop/synop.202010.csv.gz && gzip -d synop.202010.csv.gz

wget http://data.cquest.org/meteo-france/synop/synop.202011.csv.gz && gzip -d synop.202011.csv.gz

wget http://data.cquest.org/meteo-france/synop/synop.202012.csv.gz && gzip -d synop.202012.csv.gz




Pour utiliser python sous un autre os que linux, débrouillez vous avec vos daubes propriétaires intrusives.


Sous linux, python est généralement installé et pour utiliser le code partagé dans ce tuto, il suffira de copier coller le code dans un fichier processing.py puis entrer


python processing.py


Cependant, il faut installer la librairie pandas qui est très largement utilisé dans le monde de la finance et dans le monde scientifique, notamment pour sa gestion efficace des séries temporelles et sa capacité de vectorisation des données.


Pour cela voici les commandes à entrer dans linux debian avant de lancer le script processing.py pour être tranquille:



sudo apt install python3 python3-venv python3-pip python-is-python3

cd ~ && python -m venv venv

source venv/bin/activate

pip install pandas


Penser ensuite à activer l'environnement virtuel dans lequel est installé pandas chaque fois que vous utilisez le script (apres un reboot ou si vous fermez et reouvrez votre terminal) en lançant la commande:



cd ~ && source venv/bin/activate


Nous sommes en 2024 et si vous êtes cibles d'entraves anti éco-terroristes de psychopathes comme moi, et en bon scientifique qui se respecte vous inspectez vos instruments de mesures avant de les utiliser, vous pouvez inspectez le code source de pandas qui est évidemment logiciel libre ici : https://github.com/pandas-dev/pandas , ou vous pouvez faire l'hypothèse discutable qu'on peut avoir confiance dans un logiciel aussi massivement utilisé dans le monde de la finance et de la science.

Python reposant sur des librairies C pour un certains nombres d'opérations de base, le hack, y compris le hack scientifique, n'est jamais impossible mais on laissera de coté ces considérations pro-lowtech qui n'entrent pas dans le champ de réflexion de ce tutoriel.

Étape 2 - Evaluer les besoins

Pour évaluer les besoins pour des installations domestiques,

rien de plus efficace que le compteur d'eau.

Une première approche peut être de faire une règle de

trois à partir de votre consommation hebdomadaire.

Vous pouvez aussi mesurer individuellement chaque

poste de consommation (douche, machine à laver, cuisine,

jardin, wc, etc) afin de faire des projections saisonnieres

plus justes.

Pour un mobilehome avec toilettes sèches on a :

conso solo - 2 douches semaine (L)	

douche (L)			50

boisson				4

vaisselle			10

cuisine				4

machine a laver			50

semaine (2douches, 1 machine)	276

journalier			39

trimestre (13 semaines)		3588


conso à deux - 4 douches semaine (L)	

douche				50

boisson				4

vaisselle			10

cuisine				4

machine a laver			50

semaine (4douches, 1 machine)	752

journalier			107

trimestre (13 semaines)		9776

Étape 3 - Calculer rétrospectivement les précipitations journalieres et saisonnieres

Pour dimensionner correctement le stockage, il convient d'abord d'avoir des informations sur les précipitations "moyennes" des années précédentes.

Pour cela, on fournit le bout de code python suivant (valable avec les données météo france mais adaptable à d'autres données météos ailleurs, le synop étant un encodage de données utilisé par l'OMM):

import math
import os
import pandas as pd

# Attention si vous utilisez ce bout de code dans d'autres pays que la france, il faut ajouter
# les stations météos adhoc

# Processing des data
print("\nprocessing des data\n")
files=os.listdir('.')
csv=[a for a in files if a[-3:]=='csv']
combined_df = pd.concat((pd.read_csv(f,sep=';') for f in csv), ignore_index=True)
#07510 bordeaux
#07535 gourdon

#stations météos "hard coded"
stations=[{'ID': '07005', 'Nom': 'ABBEVILLE', 'Latitude': '50.136000', 'Longitude': '1.834000', 'Altitude': '69'}, {'ID': '07015', 'Nom': 'LILLE-LESQUIN', 'Latitude': '50.570000', 'Longitude': '3.097500', 'Altitude': '47'}, {'ID': '07020', 'Nom': 'PTE DE LA HAGUE', 'Latitude': '49.725167', 'Longitude': '-1.939833', 'Altitude': '6'}, {'ID': '07027', 'Nom': 'CAEN-CARPIQUET', 'Latitude': '49.180000', 'Longitude': '-0.456167', 'Altitude': '67'}, {'ID': '07037', 'Nom': 'ROUEN-BOOS', 'Latitude': '49.383000', 'Longitude': '1.181667', 'Altitude': '151'}, {'ID': '07072', 'Nom': 'REIMS-PRUNAY', 'Latitude': '49.209667', 'Longitude': '4.155333', 'Altitude': '95'}, {'ID': '07110', 'Nom': 'BREST-GUIPAVAS', 'Latitude': '48.444167', 'Longitude': '-4.412000', 'Altitude': '94'}, {'ID': '07117', 'Nom': "PLOUMANAC'H", 'Latitude': '48.825833', 'Longitude': '-3.473167', 'Altitude': '55'}, {'ID': '07130', 'Nom': 'RENNES-ST JACQUES', 'Latitude': '48.068833', 'Longitude': '-1.734000', 'Altitude': '36'}, {'ID': '07139', 'Nom': 'ALENCON', 'Latitude': '48.445500', 'Longitude': '0.110167', 'Altitude': '143'}, {'ID': '07149', 'Nom': 'ORLY', 'Latitude': '48.716833', 'Longitude': '2.384333', 'Altitude': '89'}, {'ID': '07168', 'Nom': 'TROYES-BARBEREY', 'Latitude': '48.324667', 'Longitude': '4.020000', 'Altitude': '112'}, {'ID': '07181', 'Nom': 'NANCY-OCHEY', 'Latitude': '48.581000', 'Longitude': '5.959833', 'Altitude': '336'}, {'ID': '07190', 'Nom': 'STRASBOURG-ENTZHEIM', 'Latitude': '48.549500', 'Longitude': '7.640333', 'Altitude': '150'}, {'ID': '07207', 'Nom': 'BELLE ILE-LE TALUT', 'Latitude': '47.294333', 'Longitude': '-3.218333', 'Altitude': '34'}, {'ID': '07222', 'Nom': 'NANTES-BOUGUENAIS', 'Latitude': '47.150000', 'Longitude': '-1.608833', 'Altitude': '26'}, {'ID': '07240', 'Nom': 'TOURS', 'Latitude': '47.444500', 'Longitude': '0.727333', 'Altitude': '108'}, {'ID': '07255', 'Nom': 'BOURGES', 'Latitude': '47.059167', 'Longitude': '2.359833', 'Altitude': '161'}, {'ID': '07280', 'Nom': 'DIJON-LONGVIC', 'Latitude': '47.267833', 'Longitude': '5.088333', 'Altitude': '219'}, {'ID': '07299', 'Nom': 'BALE-MULHOUSE', 'Latitude': '47.614333', 'Longitude': '7.510000', 'Altitude': '263'}, {'ID': '07314', 'Nom': 'PTE DE CHASSIRON', 'Latitude': '46.046833', 'Longitude': '-1.411500', 'Altitude': '11'}, {'ID': '07335', 'Nom': 'POITIERS-BIARD', 'Latitude': '46.593833', 'Longitude': '0.314333', 'Altitude': '123'}, {'ID': '07434', 'Nom': 'LIMOGES-BELLEGARDE', 'Latitude': '45.861167', 'Longitude': '1.175000', 'Altitude': '402'}, {'ID': '07460', 'Nom': 'CLERMONT-FD', 'Latitude': '45.786833', 'Longitude': '3.149333', 'Altitude': '331'}, {'ID': '07471', 'Nom': 'LE PUY-LOUDES', 'Latitude': '45.074500', 'Longitude': '3.764000', 'Altitude': '833'}, {'ID': '07481', 'Nom': 'LYON-ST EXUPERY', 'Latitude': '45.726500', 'Longitude': '5.077833', 'Altitude': '235'}, {'ID': '07510', 'Nom': 'BORDEAUX-MERIGNAC', 'Latitude': '44.830667', 'Longitude': '-0.691333', 'Altitude': '47'}, {'ID': '07535', 'Nom': 'GOURDON', 'Latitude': '44.745000', 'Longitude': '1.396667', 'Altitude': '260'}, {'ID': '07558', 'Nom': 'MILLAU', 'Latitude': '44.118500', 'Longitude': '3.019500', 'Altitude': '712'}, {'ID': '07577', 'Nom': 'MONTELIMAR', 'Latitude': '44.581167', 'Longitude': '4.733000', 'Altitude': '73'}, {'ID': '07591', 'Nom': 'EMBRUN', 'Latitude': '44.565667', 'Longitude': '6.502333', 'Altitude': '871'}, {'ID': '07607', 'Nom': 'MONT-DE-MARSAN', 'Latitude': '43.909833', 'Longitude': '-0.500167', 'Altitude': '59'}, {'ID': '07621', 'Nom': 'TARBES-OSSUN', 'Latitude': '43.188000', 'Longitude': '0.000000', 'Altitude': '360'}, {'ID': '07627', 'Nom': 'ST GIRONS', 'Latitude': '43.005333', 'Longitude': '1.106833', 'Altitude': '414'}, {'ID': '07630', 'Nom': 'TOULOUSE-BLAGNAC', 'Latitude': '43.621000', 'Longitude': '1.378833', 'Altitude': '151'}, {'ID': '07643', 'Nom': 'MONTPELLIER', 'Latitude': '43.577000', 'Longitude': '3.963167', 'Altitude': '2'}, {'ID': '07650', 'Nom': 'MARIGNANE', 'Latitude': '43.437667', 'Longitude': '5.216000', 'Altitude': '9'}, {'ID': '07661', 'Nom': 'CAP CEPET', 'Latitude': '43.079333', 'Longitude': '5.940833', 'Altitude': '115'}, {'ID': '07690', 'Nom': 'NICE', 'Latitude': '43.648833', 'Longitude': '7.209000', 'Altitude': '2'}, {'ID': '07747', 'Nom': 'PERPIGNAN', 'Latitude': '42.737167', 'Longitude': '2.872833', 'Altitude': '42'}, {'ID': '07761', 'Nom': 'AJACCIO', 'Latitude': '41.918000', 'Longitude': '8.792667', 'Altitude': '5'}, {'ID': '07790', 'Nom': 'BASTIA', 'Latitude': '42.540667', 'Longitude': '9.485167', 'Altitude': '10'}, {'ID': '61968', 'Nom': 'GLORIEUSES', 'Latitude': '-11.582667', 'Longitude': '47.289667', 'Altitude': '3'}, {'ID': '61970', 'Nom': 'JUAN DE NOVA', 'Latitude': '-17.054667', 'Longitude': '42.712000', 'Altitude': '9'}, {'ID': '61972', 'Nom': 'EUROPA', 'Latitude': '-22.344167', 'Longitude': '40.340667', 'Altitude': '6'}, {'ID': '61976', 'Nom': 'TROMELIN', 'Latitude': '-15.887667', 'Longitude': '54.520667', 'Altitude': '7'}, {'ID': '61980', 'Nom': 'GILLOT-AEROPORT', 'Latitude': '-20.892500', 'Longitude': '55.528667', 'Altitude': '8'}, {'ID': '61996', 'Nom': 'NOUVELLE AMSTERDAM', 'Latitude': '-37.795167', 'Longitude': '77.569167', 'Altitude': '27'}, {'ID': '61997', 'Nom': 'CROZET', 'Latitude': '-46.432500', 'Longitude': '51.856667', 'Altitude': '146'}, {'ID': '61998', 'Nom': 'KERGUELEN', 'Latitude': '-49.352333', 'Longitude': '70.243333', 'Altitude': '29'}, {'ID': '67005', 'Nom': 'PAMANDZI', 'Latitude': '-12.805500', 'Longitude': '45.282833', 'Altitude': '7'}, {'ID': '71805', 'Nom': 'ST-PIERRE', 'Latitude': '46.766333', 'Longitude': '-56.179167', 'Altitude': '21'}, {'ID': '78890', 'Nom': 'LA DESIRADE METEO', 'Latitude': '16.335000', 'Longitude': '-61.004000', 'Altitude': '27'}, {'ID': '78894', 'Nom': 'ST-BARTHELEMY METEO', 'Latitude': '17.901500', 'Longitude': '-62.852167', 'Altitude': '44'}, {'ID': '78897', 'Nom': 'LE RAIZET AERO', 'Latitude': '16.264000', 'Longitude': '-61.516333', 'Altitude': '11'}, {'ID': '78922', 'Nom': 'TRINITE-CARAVEL', 'Latitude': '14.774500', 'Longitude': '-60.875333', 'Altitude': '26'}, {'ID': '78925', 'Nom': 'LAMENTIN-AERO', 'Latitude': '14.595333', 'Longitude': '-60.995667', 'Altitude': '3'}, {'ID': '81401', 'Nom': 'SAINT LAURENT', 'Latitude': '5.485500', 'Longitude': '-54.031667', 'Altitude': '5'}, {'ID': '81405', 'Nom': 'CAYENNE-MATOURY', 'Latitude': '4.822333', 'Longitude': '-52.365333', 'Altitude': '4'}, {'ID': '81408', 'Nom': 'SAINT GEORGES', 'Latitude': '3.890667', 'Longitude': '-51.804667', 'Altitude': '6'}, {'ID': '81415', 'Nom': 'MARIPASOULA', 'Latitude': '3.640167', 'Longitude': '-54.028333', 'Altitude': '106'}, {'ID': '89642', 'Nom': "DUMONT D'URVILLE", 'Latitude': '-66.663167', 'Longitude': '140.001000', 'Altitude': '43'}]


def distance(lat1, lon1, lat2, lon2):
    """
    Calcule la distance entre deux points géographiques en utilisant la formule de la distance euclidienne.
    """
    return math.sqrt((lat2 - lat1)**2 + (lon2 - lon1)**2)

def station_la_plus_proche(x, y, stations):
    """
    Trouve la station météo la plus proche en utilisant les coordonnées x et y (latitude et longitude).
    """
    distance_min = float('inf')
    station_proche = None
    
    for station in stations:
        lat_station = float(station['Latitude'])
        lon_station = float(station['Longitude'])
        d = distance(x, y, lat_station, lon_station)
        if d < distance_min:
            distance_min = d
            station_proche = station
    
    return station_proche

# Demander à l'utilisateur d'entrer la latitude et la longitude
x_input = input("Entrez la latitude de votre lieux: ")
y_input = input("Entrez la longitude de votre lieux: ")

# Remplacer les virgules par des points
x_input = float(x_input.replace(',', '.'))
y_input = float(y_input.replace(',', '.'))

# Utilisez les valeurs entrées par l'utilisateur comme variables x et y pour trouver la station météo la plus proche
station_proche = station_la_plus_proche(x_input, y_input, stations)
print("La station météo la plus proche est:", station_proche['Nom'])    

result=combined_df[combined_df['numer_sta']==int(station_proche['ID'])]

# Convertir la colonne 'date_column' dans un format datetime et la mettre en index trié
result['datetime'] = pd.to_datetime(result['date'], format='%Y%m%d%H%M%S')
result.set_index('datetime', inplace=True)
result = result.sort_index()

# remplacer les données manquantes par 0
result['rr3']=result['rr3'].replace('mq','0')
result['rr3']=result['rr3'].astype('float')

# Ne garder que la colonne des précipitations des 3 dernieres heures
result=result['rr3']

# Calculer les sommes de précipitations par jour
resultday=result.resample('D').sum()
print("\nMoyenne par jour (mm):\n", resultday.mean())
print("Minimum par jour (mm):\n", resultday.min())
print("Maximum par jour  (mm):\n", resultday.max())


# Calculer les sommes de précipitations par semaine
resultweek=result.resample('W').sum()

# Calculer les sommes de précipitations par mois
resultmonth=result.resample('ME').sum()

# Calculer les sommes de précipitations par trimestre
resulttrim=result.resample('QE').sum()
resulttrim=resulttrim.rename_axis('trimestre')
print(resulttrim)

# Calculer les sommes de précipitations par an
resultyear=result.resample('YE').sum()
print("\nPrécipitations annuelles moyennes (mm):\n",resultyear.mean())

# Calculer le nombre de jours consécutifs maximum sans pluie
max_streak = 0
current_streak = 0
for value in resultday:
    if value == 0:
        current_streak += 1
        max_streak = max(max_streak, current_streak)
    else:
        current_streak = 0  # Reset the streak if the value is not zero
print(f"\nNombre de jours consecutifs maximum sans pluie: {max_streak}")

# Moyenne par trimestre pour chaque trimestre
moyenne_trimestrielle_par_trimestre = resulttrim.groupby(resulttrim.index.quarter).mean()

# Minimum par trimestre pour chaque trimestre
min_trimestrielle_par_trimestre = resulttrim.groupby(resulttrim.index.quarter).min()

# Maximum par trimestre pour chaque trimestre
max_trimestrielle_par_trimestre = resulttrim.groupby(resulttrim.index.quarter).max()

# Imprimer les résultats
print("\nMoyenne par trimestre pour chaque trimestre (mm):\n", moyenne_trimestrielle_par_trimestre)
print("\nMinimum par trimestre pour chaque trimestre (mm):\n", min_trimestrielle_par_trimestre)
print("\nMaximum par trimestre pour chaque trimestre (mm):\n", max_trimestrielle_par_trimestre)

# Minimum par jour pour chaque trimestre
min_par_jour_par_trimestre = resultday.groupby(resultday.index.quarter).min()
min_par_jour_par_trimestre=min_par_jour_par_trimestre.rename_axis('trimestre')

# Maximum par jour pour chaque trimestre
max_par_jour_par_trimestre = resultday.groupby(resultday.index.quarter).max()
max_par_jour_par_trimestre=max_par_jour_par_trimestre.rename_axis('trimestre')

# Moyenne par jour pour chaque trimestre
moyenne_par_jour_par_trimestre = resultday.groupby(resultday.index.quarter).mean()
moyenne_par_jour_par_trimestre=moyenne_par_jour_par_trimestre.rename_axis('trimestre')

# Imprimer les résultats
print("\nMinimum par jour pour chaque trimestre (mm):\n", min_par_jour_par_trimestre)
print("\nMaximum par jour pour chaque trimestre (mm):\n", max_par_jour_par_trimestre)
print("\nMoyenne par jour pour chaque trimestre (mm):\n", moyenne_par_jour_par_trimestre)


Pour la latitude 44.2 et longitude 0.6 on obtient:

processing des data

Entrez la latitude de votre lieux: 44.2
Entrez la longitude de votre lieux: 0.6
La station météo la plus proche est: GOURDON

Moyenne par jour (mm):
 2.022896963663514
Minimum par jour (mm):
 -0.6000000000000001
Maximum par jour  (mm):
 55.0
trimestre
2010-03-31    202.0
2010-06-30    245.4
2010-09-30    132.2
2010-12-31    201.2
2011-03-31    126.7
2011-06-30    102.2
2011-09-30    164.6
2011-12-31    207.0
2012-03-31     99.8
2012-06-30    341.0
2012-09-30    100.0
2012-12-31    188.8
2013-03-31    248.4
2013-06-30    307.5
2013-09-30    136.6
2013-12-31    247.8
2014-03-31    253.8
2014-06-30    201.8
2014-09-30    192.8
2014-12-31    139.0
2015-03-31    176.4
2015-06-30    155.7
2015-09-30    184.6
2015-12-31     82.6
2016-03-31    322.1
2016-06-30    300.4
2016-09-30     29.0
2016-12-31    115.1
2017-03-31    213.0
2017-06-30    216.3
2017-09-30    133.2
2017-12-31    155.3
2018-03-31    252.8
2018-06-30    251.9
2018-09-30    103.7
2018-12-31    199.3
2019-03-31    100.1
2019-06-30    203.5
2019-09-30    138.8
2019-12-31    350.9
2020-03-31    149.5
2020-06-30    150.9
2020-09-30     66.9
2020-12-31    237.4
Freq: QE-DEC, Name: rr3, dtype: float64

Précipitations annuelles moyennes (mm):
 738.9090909090909

Nombre de jours consecutifs maximum sans pluie: 44

Moyenne par trimestre pour chaque trimestre (mm):
 trimestre
1    194.963636
2    225.145455
3    125.672727
4    193.127273
Name: rr3, dtype: float64

Minimum par trimestre pour chaque trimestre (mm):
 trimestre
1     99.8
2    102.2
3     29.0
4     82.6
Name: rr3, dtype: float64

Maximum par trimestre pour chaque trimestre (mm):
 trimestre
1    322.1
2    341.0
3    192.8
4    350.9
Name: rr3, dtype: float64

Minimum par jour pour chaque trimestre (mm):
 trimestre
1   -0.6
2   -0.4
3   -0.3
4   -0.5
Name: rr3, dtype: float64

Maximum par jour pour chaque trimestre (mm):
 trimestre
1    42.8
2    55.0
3    50.2
4    28.0
Name: rr3, dtype: float64

Moyenne par jour pour chaque trimestre (mm):
 trimestre
1    2.159718
2    2.474126
3    1.366008
4    2.099209
Name: rr3, dtype: float64

Étape 4 - dimensionner la surfce de récupération et le stockage

Pour dimensionner, le stockage, on se rappelera utilement que 1m2 de surface donne un équivalent d'1L pour 1mm de précipitations.

On peut alors faire des calculs avec les précipitations moyennes précédemment estimées et les consommations moyennes précédemment mesurées.


Exemple pour 1m2:

annuel (L) 739 max jour (L) 55 min trimestre (L) 29 max trimestre (L) 350 moyenne min trimestre(L) 125

Besoins: Max 44 j sans pluie solo (L) 1735 Max 44 j sans pluie duo (L) 4727 consommation solo trimestre 3549 consommation duo trimestre 9669


Estimation "grosse louche": conso trimestre/precipitations moyenne min trimestre = solo : 3588/125=29 duo: 9776/125=78

=> Il faut 29m2 pour satisfaire les besoins solo avec les hypothèses etape 1 => Il faut 78m2 pour satisfaire les besoins duo avec les hypothèses etape 1

Les fortes précipitations sont généralement regroupées (grand écartype a la moyenne), et on prendra par conséquent un réservoir minimum dimensionné à deux fois et demi ce qui est nécessaire pour la précipitation journalière maximum.


Contraintes précipitations importantes: Il faut a minima un reservoir de 3987L en solo (2.5*précipitations journaliere max*29) et 10725L en duo (2.5*précipitations max *78)


Mais il faut également un minimum pour les périodes de sécheresses: 1735L en solo (44j consécutifs max sans pluie) de réserve avec les hypothèses etape 1 4727L en duo (44j consécutifs max sans pluie) de réserve avec les hypothèses etape 1 ce qui est satisfait avec la contrainte précédente.

On va maintenant utiliser ces résultats de surface minimum et de stockage minimum comme hypothèse de base et on va améliorer notre bout de code python précédent et ajouter un "data-test" avec des itérations sur le nombre d'unité de 20m2 de récupération et de cuves de 1000L pour vérifier qu'on n'a pas de débordement ou de tarissement de notre stockage et qu'on satisfait les besoins de consommation.

Étape 5 - Optimiser le stockage

Le bout de code python amélioré est le suivant (on fait l'hypothèse qu'il y a une gestion du trop plein et qu'on n'a donc pas de problèmes de réservoir qui déborde):

import math
import os
import pandas as pd
import time
# Attention si vous utilisez ce bout de code dans d'autres pays que la france, il faut ajouter
# les stations météos adhoc

# Processing des data
print("\nprocessing des data\n")
files=os.listdir('.')
csv=[a for a in files if a[-3:]=='csv']
combined_df = pd.concat((pd.read_csv(f,sep=';') for f in csv), ignore_index=True)
#07510 bordeaux
#07535 gourdon

#stations météos "hard coded"
stations=[{'ID': '07005', 'Nom': 'ABBEVILLE', 'Latitude': '50.136000', 'Longitude': '1.834000', 'Altitude': '69'}, {'ID': '07015', 'Nom': 'LILLE-LESQUIN', 'Latitude': '50.570000', 'Longitude': '3.097500', 'Altitude': '47'}, {'ID': '07020', 'Nom': 'PTE DE LA HAGUE', 'Latitude': '49.725167', 'Longitude': '-1.939833', 'Altitude': '6'}, {'ID': '07027', 'Nom': 'CAEN-CARPIQUET', 'Latitude': '49.180000', 'Longitude': '-0.456167', 'Altitude': '67'}, {'ID': '07037', 'Nom': 'ROUEN-BOOS', 'Latitude': '49.383000', 'Longitude': '1.181667', 'Altitude': '151'}, {'ID': '07072', 'Nom': 'REIMS-PRUNAY', 'Latitude': '49.209667', 'Longitude': '4.155333', 'Altitude': '95'}, {'ID': '07110', 'Nom': 'BREST-GUIPAVAS', 'Latitude': '48.444167', 'Longitude': '-4.412000', 'Altitude': '94'}, {'ID': '07117', 'Nom': "PLOUMANAC'H", 'Latitude': '48.825833', 'Longitude': '-3.473167', 'Altitude': '55'}, {'ID': '07130', 'Nom': 'RENNES-ST JACQUES', 'Latitude': '48.068833', 'Longitude': '-1.734000', 'Altitude': '36'}, {'ID': '07139', 'Nom': 'ALENCON', 'Latitude': '48.445500', 'Longitude': '0.110167', 'Altitude': '143'}, {'ID': '07149', 'Nom': 'ORLY', 'Latitude': '48.716833', 'Longitude': '2.384333', 'Altitude': '89'}, {'ID': '07168', 'Nom': 'TROYES-BARBEREY', 'Latitude': '48.324667', 'Longitude': '4.020000', 'Altitude': '112'}, {'ID': '07181', 'Nom': 'NANCY-OCHEY', 'Latitude': '48.581000', 'Longitude': '5.959833', 'Altitude': '336'}, {'ID': '07190', 'Nom': 'STRASBOURG-ENTZHEIM', 'Latitude': '48.549500', 'Longitude': '7.640333', 'Altitude': '150'}, {'ID': '07207', 'Nom': 'BELLE ILE-LE TALUT', 'Latitude': '47.294333', 'Longitude': '-3.218333', 'Altitude': '34'}, {'ID': '07222', 'Nom': 'NANTES-BOUGUENAIS', 'Latitude': '47.150000', 'Longitude': '-1.608833', 'Altitude': '26'}, {'ID': '07240', 'Nom': 'TOURS', 'Latitude': '47.444500', 'Longitude': '0.727333', 'Altitude': '108'}, {'ID': '07255', 'Nom': 'BOURGES', 'Latitude': '47.059167', 'Longitude': '2.359833', 'Altitude': '161'}, {'ID': '07280', 'Nom': 'DIJON-LONGVIC', 'Latitude': '47.267833', 'Longitude': '5.088333', 'Altitude': '219'}, {'ID': '07299', 'Nom': 'BALE-MULHOUSE', 'Latitude': '47.614333', 'Longitude': '7.510000', 'Altitude': '263'}, {'ID': '07314', 'Nom': 'PTE DE CHASSIRON', 'Latitude': '46.046833', 'Longitude': '-1.411500', 'Altitude': '11'}, {'ID': '07335', 'Nom': 'POITIERS-BIARD', 'Latitude': '46.593833', 'Longitude': '0.314333', 'Altitude': '123'}, {'ID': '07434', 'Nom': 'LIMOGES-BELLEGARDE', 'Latitude': '45.861167', 'Longitude': '1.175000', 'Altitude': '402'}, {'ID': '07460', 'Nom': 'CLERMONT-FD', 'Latitude': '45.786833', 'Longitude': '3.149333', 'Altitude': '331'}, {'ID': '07471', 'Nom': 'LE PUY-LOUDES', 'Latitude': '45.074500', 'Longitude': '3.764000', 'Altitude': '833'}, {'ID': '07481', 'Nom': 'LYON-ST EXUPERY', 'Latitude': '45.726500', 'Longitude': '5.077833', 'Altitude': '235'}, {'ID': '07510', 'Nom': 'BORDEAUX-MERIGNAC', 'Latitude': '44.830667', 'Longitude': '-0.691333', 'Altitude': '47'}, {'ID': '07535', 'Nom': 'GOURDON', 'Latitude': '44.745000', 'Longitude': '1.396667', 'Altitude': '260'}, {'ID': '07558', 'Nom': 'MILLAU', 'Latitude': '44.118500', 'Longitude': '3.019500', 'Altitude': '712'}, {'ID': '07577', 'Nom': 'MONTELIMAR', 'Latitude': '44.581167', 'Longitude': '4.733000', 'Altitude': '73'}, {'ID': '07591', 'Nom': 'EMBRUN', 'Latitude': '44.565667', 'Longitude': '6.502333', 'Altitude': '871'}, {'ID': '07607', 'Nom': 'MONT-DE-MARSAN', 'Latitude': '43.909833', 'Longitude': '-0.500167', 'Altitude': '59'}, {'ID': '07621', 'Nom': 'TARBES-OSSUN', 'Latitude': '43.188000', 'Longitude': '0.000000', 'Altitude': '360'}, {'ID': '07627', 'Nom': 'ST GIRONS', 'Latitude': '43.005333', 'Longitude': '1.106833', 'Altitude': '414'}, {'ID': '07630', 'Nom': 'TOULOUSE-BLAGNAC', 'Latitude': '43.621000', 'Longitude': '1.378833', 'Altitude': '151'}, {'ID': '07643', 'Nom': 'MONTPELLIER', 'Latitude': '43.577000', 'Longitude': '3.963167', 'Altitude': '2'}, {'ID': '07650', 'Nom': 'MARIGNANE', 'Latitude': '43.437667', 'Longitude': '5.216000', 'Altitude': '9'}, {'ID': '07661', 'Nom': 'CAP CEPET', 'Latitude': '43.079333', 'Longitude': '5.940833', 'Altitude': '115'}, {'ID': '07690', 'Nom': 'NICE', 'Latitude': '43.648833', 'Longitude': '7.209000', 'Altitude': '2'}, {'ID': '07747', 'Nom': 'PERPIGNAN', 'Latitude': '42.737167', 'Longitude': '2.872833', 'Altitude': '42'}, {'ID': '07761', 'Nom': 'AJACCIO', 'Latitude': '41.918000', 'Longitude': '8.792667', 'Altitude': '5'}, {'ID': '07790', 'Nom': 'BASTIA', 'Latitude': '42.540667', 'Longitude': '9.485167', 'Altitude': '10'}, {'ID': '61968', 'Nom': 'GLORIEUSES', 'Latitude': '-11.582667', 'Longitude': '47.289667', 'Altitude': '3'}, {'ID': '61970', 'Nom': 'JUAN DE NOVA', 'Latitude': '-17.054667', 'Longitude': '42.712000', 'Altitude': '9'}, {'ID': '61972', 'Nom': 'EUROPA', 'Latitude': '-22.344167', 'Longitude': '40.340667', 'Altitude': '6'}, {'ID': '61976', 'Nom': 'TROMELIN', 'Latitude': '-15.887667', 'Longitude': '54.520667', 'Altitude': '7'}, {'ID': '61980', 'Nom': 'GILLOT-AEROPORT', 'Latitude': '-20.892500', 'Longitude': '55.528667', 'Altitude': '8'}, {'ID': '61996', 'Nom': 'NOUVELLE AMSTERDAM', 'Latitude': '-37.795167', 'Longitude': '77.569167', 'Altitude': '27'}, {'ID': '61997', 'Nom': 'CROZET', 'Latitude': '-46.432500', 'Longitude': '51.856667', 'Altitude': '146'}, {'ID': '61998', 'Nom': 'KERGUELEN', 'Latitude': '-49.352333', 'Longitude': '70.243333', 'Altitude': '29'}, {'ID': '67005', 'Nom': 'PAMANDZI', 'Latitude': '-12.805500', 'Longitude': '45.282833', 'Altitude': '7'}, {'ID': '71805', 'Nom': 'ST-PIERRE', 'Latitude': '46.766333', 'Longitude': '-56.179167', 'Altitude': '21'}, {'ID': '78890', 'Nom': 'LA DESIRADE METEO', 'Latitude': '16.335000', 'Longitude': '-61.004000', 'Altitude': '27'}, {'ID': '78894', 'Nom': 'ST-BARTHELEMY METEO', 'Latitude': '17.901500', 'Longitude': '-62.852167', 'Altitude': '44'}, {'ID': '78897', 'Nom': 'LE RAIZET AERO', 'Latitude': '16.264000', 'Longitude': '-61.516333', 'Altitude': '11'}, {'ID': '78922', 'Nom': 'TRINITE-CARAVEL', 'Latitude': '14.774500', 'Longitude': '-60.875333', 'Altitude': '26'}, {'ID': '78925', 'Nom': 'LAMENTIN-AERO', 'Latitude': '14.595333', 'Longitude': '-60.995667', 'Altitude': '3'}, {'ID': '81401', 'Nom': 'SAINT LAURENT', 'Latitude': '5.485500', 'Longitude': '-54.031667', 'Altitude': '5'}, {'ID': '81405', 'Nom': 'CAYENNE-MATOURY', 'Latitude': '4.822333', 'Longitude': '-52.365333', 'Altitude': '4'}, {'ID': '81408', 'Nom': 'SAINT GEORGES', 'Latitude': '3.890667', 'Longitude': '-51.804667', 'Altitude': '6'}, {'ID': '81415', 'Nom': 'MARIPASOULA', 'Latitude': '3.640167', 'Longitude': '-54.028333', 'Altitude': '106'}, {'ID': '89642', 'Nom': "DUMONT D'URVILLE", 'Latitude': '-66.663167', 'Longitude': '140.001000', 'Altitude': '43'}]


def distance(lat1, lon1, lat2, lon2):
    """
    Calcule la distance entre deux points géographiques en utilisant la formule de la distance euclidienne.
    """
    return math.sqrt((lat2 - lat1)**2 + (lon2 - lon1)**2)

def station_la_plus_proche(x, y, stations):
    """
    Trouve la station météo la plus proche en utilisant les coordonnées x et y (latitude et longitude).
    """
    distance_min = float('inf')
    station_proche = None
    
    for station in stations:
        lat_station = float(station['Latitude'])
        lon_station = float(station['Longitude'])
        d = distance(x, y, lat_station, lon_station)
        if d < distance_min:
            distance_min = d
            station_proche = station
    
    return station_proche

# Demander à l'utilisateur d'entrer la latitude et la longitude
x_input = input("Entrez la latitude de votre lieux: ")
y_input = input("Entrez la longitude de votre lieux: ")

# Remplacer les virgules par des points
x_input = float(x_input.replace(',', '.'))
y_input = float(y_input.replace(',', '.'))

# Utilisez les valeurs entrées par l'utilisateur comme variables x et y pour trouver la station météo la plus proche
station_proche = station_la_plus_proche(x_input, y_input, stations)
print("\nLa station météo la plus proche est:", station_proche['Nom'])    

# Demander à l'utilisateur d'entrer sa consommation d'eau hebdomadaire
waterconsohebdo = input("Entrez la consommation d'eau hebdomadaire (L): ")

# Remplacer les virgules par des points
waterconsohebdo = float(waterconsohebdo.replace(',', '.'))

# Calcul consommation journaliere moyenne
waterconsojour = waterconsohebdo/7

result=combined_df[combined_df['numer_sta']==int(station_proche['ID'])]

# Convertir la colonne 'date_column' dans un format datetime et la mettre en index trié
result['datetime'] = pd.to_datetime(result['date'], format='%Y%m%d%H%M%S')
result.set_index('datetime', inplace=True)
result = result.sort_index()

# remplacer les données manquantes par 0
result['rr3']=result['rr3'].replace('mq','0')
result['rr3']=result['rr3'].astype('float')

# Ne garder que la colonne des précipitations des 3 dernieres heures
result=result['rr3']

# Calculer les sommes de précipitations par jour
resultday=result.resample('D').sum()
print("\nMoyenne par jour (mm):\n", resultday.mean())
print("Minimum par jour (mm):\n", resultday.min())
print("Maximum par jour  (mm):\n", resultday.max())


# Calculer les sommes de précipitations par semaine
resultweek=result.resample('W').sum()

# Calculer les sommes de précipitations par mois
resultmonth=result.resample('ME').sum()

# Calculer les sommes de précipitations par trimestre
resulttrim=result.resample('QE').sum()
resulttrim=resulttrim.rename_axis('trimestre')
print(resulttrim)

# Calculer les sommes de précipitations par an
resultyear=result.resample('YE').sum()
print("\nPrécipitations annuelles moyennes (mm):\n",resultyear.mean())

# Calculer le nombre de jours consécutifs maximum sans pluie
max_streak = 0
current_streak = 0
for value in resultday:
    if value == 0:
        current_streak += 1
        max_streak = max(max_streak, current_streak)
    else:
        current_streak = 0  # Reset the streak if the value is not zero
print(f"\nNombre de jours consecutifs maximum sans pluie: {max_streak}")

# Moyenne par trimestre pour chaque trimestre
moyenne_trimestrielle_par_trimestre = resulttrim.groupby(resulttrim.index.quarter).mean()

# Minimum par trimestre pour chaque trimestre
min_trimestrielle_par_trimestre = resulttrim.groupby(resulttrim.index.quarter).min()

# Maximum par trimestre pour chaque trimestre
max_trimestrielle_par_trimestre = resulttrim.groupby(resulttrim.index.quarter).max()

# Imprimer les résultats
print("\nMoyenne par trimestre pour chaque trimestre (mm):\n", moyenne_trimestrielle_par_trimestre)
print("\nMinimum par trimestre pour chaque trimestre (mm):\n", min_trimestrielle_par_trimestre)
print("\nMaximum par trimestre pour chaque trimestre (mm):\n", max_trimestrielle_par_trimestre)

# Minimum par jour pour chaque trimestre
min_par_jour_par_trimestre = resultday.groupby(resultday.index.quarter).min()
min_par_jour_par_trimestre=min_par_jour_par_trimestre.rename_axis('trimestre')

# Maximum par jour pour chaque trimestre
max_par_jour_par_trimestre = resultday.groupby(resultday.index.quarter).max()
max_par_jour_par_trimestre=max_par_jour_par_trimestre.rename_axis('trimestre')

# Moyenne par jour pour chaque trimestre
moyenne_par_jour_par_trimestre = resultday.groupby(resultday.index.quarter).mean()
moyenne_par_jour_par_trimestre=moyenne_par_jour_par_trimestre.rename_axis('trimestre')

# Imprimer les résultats
print("\nMinimum par jour pour chaque trimestre (mm):\n", min_par_jour_par_trimestre)
print("\nMaximum par jour pour chaque trimestre (mm):\n", max_par_jour_par_trimestre)
print("\nMoyenne par jour pour chaque trimestre (mm):\n", moyenne_par_jour_par_trimestre)




#Calcul seuil mini surface de recuperation:
surf0=math.ceil((13*waterconsohebdo)/min(moyenne_trimestrielle_par_trimestre))
print(f"""Seuil surface recuperation avec hypothèse entrée et données fournies par l'utilisateur (m2)
hypothese:(conso trimestre / precipitations moyenne min trimestre)
{int(math.ceil(surf0))} m2""")

#Calcul seuil mini reservoir:
contraintejourmax=(resultday.max())*surf0
contraintejourszero=max_streak*waterconsojour
volume0=math.ceil(max(2.5*contraintejourmax,contraintejourszero))
print(f"""\nSeuil volume avec hypothèse entrée et données fournies par l'utilisateur (L)
hypothèse: max((2.5*précipitations journaliere maxi*Seuil surface recuperation),(44j consécutifs max sans pluie*conso journaliere))
{int(math.ceil(volume0))} L""")

surf0_input = input("\n\nSi vous souhaitez corriger la valeur initiale de surface (m2) pour les itérations, entrer votre valeur, sinon appuyer sur entree")
try:
    _=float(surf0_input)
    surf0=_
except Exception as err:
    print(f"\nerreur de type ou valeur utilisateur vide, poursuite avec utilisation de surf0={surf0}m2")


volume0_input = input("\n\nSi vous souhaitez corriger la valeur initiale de volume (L) pour les itérations, entrer votre valeur, sinon appuyer sur entree")
try:
    _=float(volume0_input)
    volume0=_
except Exception as err:
    print(f"\nerreur de type ou valeur utilisateur vide, poursuite avec utilisation de volume0={volume0}L")

# Itérations algorithmiques stockage&consommation

#fonction iteration volume
def iterv(data,v0,s0):
    "iteration volume +1000L"
    water=(2/3)*v0
    for mm in data:
        recupday=mm*s0
        print(f'recupday:{recupday}')
        consoday=waterconsojour
        water=water+recupday-consoday
        print(f'water:{water}')
        if water>v0:
            print("récupérateur plein")
            water=v0 #hypothese gestion du trop plein ok
            continue
            #print("récupérateur déborde, iteration avec récupérateur plus grande")
            #time.sleep(1)
            #return iterv(data,v0+1000,s0)
        if water<0:
            print("récupérateur vide, iteration avec hypothèse surface de récupération plus grande")
            #time.sleep(1)
            return iters(data,v0,s0+10)
    return v0

#fonction iteration volume
def iters(data,v0,s0):
    "iteration suface +10m2"
    water=(2/3)*v0
    for mm in data:
        recupday=mm*s0
        print(f'recupday:{recupday}')
        consoday=waterconsojour
        water=water+recupday-consoday
        print(f'water:{water}')
        if water>v0:
            print("récupérateur plein")
            water=v0 #hypothese gestion du trop plein ok
            continue
            #print("récupérateur déborde, iteration avec récupérateur plus grande")
            #time.sleep(1)
            #return iterv(data,v0+1000,s0)
        if water<0:
            print("récupérateur vide, iteration avec hypothèse surface de récupération plus grande")
            #time.sleep(1)
            return iters(data,v0,s0+10)
    return s0
#hypothèse récupérateur 2/3 pleine à t0
water=(1/4)*volume0
resultvolume=volume0
resultsurf=surf0
#boucle iteration
listeday=list(resultday)
for mm in listeday:
    recupday=mm*surf0
    print(f'recupday:{recupday}')
    consoday=waterconsojour
    water=water+recupday-consoday
    print(f'water:{water}')
    if water>volume0:
        print("récupérateur plein")
        water=volume0 #hypothese gestion du trop plein ok
        continue
        #print("récupérateur déborde, iteration avec récupérateur plus grande")
        #time.sleep(1)
        #resultvolume=iterv(listeday,volume0+1000,surf0)
        #break
    if water<0:
        print("récupérateur vide, iteration avec hypothèse surface de récupération plus grande")
        #time.sleep(1)
        resultsurf=iters(listeday,volume0,surf0+10)
        break
print(f"""avec les données fournies par l'utilisateur, et un volume de {resultvolume}L et une surface de {resultsurf}m2,
on satisfait aux besoins utilisateurs ({waterconsohebdo}L/semaine)entrées en hypothèse""")


On fait le test avec les hypothèses ci dessus (latitude 44.2, longitude 0.6, solo 276L semaine, duo 752L semaine)

On obtient les résultats suivants: solo: avec les données fournies par l'utilisateur, et un volume de 3988L et une surface de 39m2, on satisfait aux besoins utilisateurs (276.0L/semaine)entrées en hypothèse


en ajustant la surface et le volume manuellement autour de ces valeurs on peut optimiser:

avec les données fournies par l'utilisateur, et un volume de 6000.0L et une surface de 29m2,
on satisfait aux besoins utilisateurs (276.0L/semaine)entrées en hypothèse
avec les données fournies par l'utilisateur, et un volume de 15000.0L et une surface de 20m2,
on satisfait aux besoins utilisateurs (276.0L/semaine)entrées en hypothèse

duo:

avec les données fournies par l'utilisateur, et un volume de 10725L et une surface de 88m2,
on satisfait aux besoins utilisateurs (752.0L/semaine)entrées en hypothèse

en ajustant la surface et le volume manuellement autour de ces valeurs on peut optimiser:

avec les données fournies par l'utilisateur, et un volume de 15000.0L et une surface de 60.0m2,
on satisfait aux besoins utilisateurs (752.0L/semaine)entrées en hypothèse

Commentaires

Draft