Remorque génératrice solaire - Système électrique/en : Différence entre versions

(Page créée avec « The cheapest and cleanest energy is that which we do not produce/consume! »)
(Mise à jour pour être en accord avec la nouvelle version de la source de la page)
 
(103 révisions intermédiaires par 2 utilisateurs non affichées)
Ligne 3 : Ligne 3 :
 
|Main_Picture_annotation={"version":"3.5.0","objects":[{"type":"image","version":"3.5.0","originX":"left","originY":"top","left":-15,"top":1,"width":6000,"height":4000,"fill":"rgb(0,0,0)","stroke":null,"strokeWidth":0,"strokeDashArray":null,"strokeLineCap":"butt","strokeDashOffset":0,"strokeLineJoin":"miter","strokeMiterLimit":4,"scaleX":0.11,"scaleY":0.11,"angle":0,"flipX":false,"flipY":false,"opacity":1,"shadow":null,"visible":true,"clipTo":null,"backgroundColor":"","fillRule":"nonzero","paintFirst":"fill","globalCompositeOperation":"source-over","transformMatrix":null,"skewX":0,"skewY":0,"crossOrigin":"","cropX":0,"cropY":0,"src":"https://wiki.lowtechlab.org/images/1/1e/Remorque_g_n_rateur_solaire_DSC_0363.JPG","filters":[]}],"height":449.78662873399713,"width":600}
 
|Main_Picture_annotation={"version":"3.5.0","objects":[{"type":"image","version":"3.5.0","originX":"left","originY":"top","left":-15,"top":1,"width":6000,"height":4000,"fill":"rgb(0,0,0)","stroke":null,"strokeWidth":0,"strokeDashArray":null,"strokeLineCap":"butt","strokeDashOffset":0,"strokeLineJoin":"miter","strokeMiterLimit":4,"scaleX":0.11,"scaleY":0.11,"angle":0,"flipX":false,"flipY":false,"opacity":1,"shadow":null,"visible":true,"clipTo":null,"backgroundColor":"","fillRule":"nonzero","paintFirst":"fill","globalCompositeOperation":"source-over","transformMatrix":null,"skewX":0,"skewY":0,"crossOrigin":"","cropX":0,"cropY":0,"src":"https://wiki.lowtechlab.org/images/1/1e/Remorque_g_n_rateur_solaire_DSC_0363.JPG","filters":[]}],"height":449.78662873399713,"width":600}
 
|Licences=Attribution (CC BY)
 
|Licences=Attribution (CC BY)
|Description=This tutorial presents the sizing and construction of an electrical system for a solar generator (1 kWp or ‘kilowatt peak’) which can be moved by bicycle. This structure was designed to fit on the CHARRETTE, an assisted trailer designed by the Véloma association whose plans are freely available.
+
|Description=This tutorial presents the sizing and construction of an electrical system for a solar generator (1 kWp or ‘kilowatt peak’) which can be moved by bicycle. This structure was designed to fit on the CHARRETTE, an assisted trailer designed by the Véloma association, whose plans are freely available.
 
|Area=Energy
 
|Area=Energy
 
|Type=Tutorial
 
|Type=Tutorial
Ligne 28 : Ligne 28 :
 
Beginning with this concrete case, "the tutorial details the general steps of sizing a photovoltaic installation in self-consumption". The context, the preliminary evaluation of needs and the choice of adapted energy sources are explained in detail in the document "An energy-autonomous Festival?’ In the ‘Files’ section".
 
Beginning with this concrete case, "the tutorial details the general steps of sizing a photovoltaic installation in self-consumption". The context, the preliminary evaluation of needs and the choice of adapted energy sources are explained in detail in the document "An energy-autonomous Festival?’ In the ‘Files’ section".
  
This tutorial is addressed to people with a basic level of knowledge in electricity and in the components of photovoltaic installation. If that is not your case, do not hesitate to release the basics via E-leaning of INES (in English) or via the GuidEnR Photovoltaic website. (Links in the ‘Notes and references’ section). Warning: This tutorial does not cover the basic notions of electricity and the associated safety instructions. These manipulations can become very dangerous! It is your responsibility to ensure you work safely.
+
{{Info|This tutorial is addressed to people with a basic level of knowledge in electricity and in the components of photovoltaic installation. If that is not your case, do not hesitate to release the basics via E-leaning of INES (in English) or via the GuidEnR Photovoltaic website. (Links in the ‘Notes and references’ section).}}{{Warning| This tutorial does not cover the basic notions of electricity and the associated safety instructions. These manipulations can become very dangerous! It is your responsibility to ensure you work safely.}}
 
}}
 
}}
 
{{Materials
 
{{Materials
Ligne 59 : Ligne 59 :
 
|650
 
|650
 
|0
 
|0
 +
|-
 
|12
 
|12
 
|Hawker 4PzS240 traction battery - 2V 240Ah
 
|Hawker 4PzS240 traction battery - 2V 240Ah
Ligne 133 : Ligne 134 :
 
|9,5
 
|9,5
 
|9,5
 
|9,5
 +
|-
 
|1
 
|1
 
|Bloc multiprise extérieur IP44
 
|Bloc multiprise extérieur IP44
Ligne 143 : Ligne 145 :
 
|1282 € (~1,375.00 $USD)
 
|1282 € (~1,375.00 $USD)
 
|}
 
|}
|Tools=
+
|Tools=- Tournevis
 +
 
 +
- Pince coupante
 +
 
 +
- Clés à pipes
 +
 
 +
- Clés plates
 +
 
 +
- Multimètre
 +
 
 +
- Perceuse
 +
 
 +
- Pince à sertir pour les cosses de batterie (idéalement)
 
|Prerequisites={{Prerequisites
 
|Prerequisites={{Prerequisites
 
|Prerequisites=Remorque génératrice solaire - Structure
 
|Prerequisites=Remorque génératrice solaire - Structure
Ligne 153 : Ligne 167 :
 
{{Tuto Step
 
{{Tuto Step
 
|Step_Title=Evaluate your needs and identify the most suitable energy sources.
 
|Step_Title=Evaluate your needs and identify the most suitable energy sources.
|Step_Content=The cheapest and cleanest energy is that which we do not produce/consume!
+
|Step_Content='''The cheapest and cleanest energy is that which we do not produce/consume !'''
  
Partant de ce principe, la démarche [https://negawatt.org/sobriete-efficacite négaWatt] propose de repenser notre vision de l’énergie en s’appuyant sur une démarche en trois étapes: [https://negawatt.org/sobriete-efficacite Sobriété, Efficacité puis Énergies Renouvelables]. Avant de dimensionner une installation électrique photovoltaïque, il est essentiel de se poser plusieurs questions:
+
In line with this principle, this approach[https://negawatt.org/sobriete-efficacite négaWatt] proposes to rethink our vision of energy by applying a three step approach: [https://negawatt.org/sobriete-efficacite Sobriety, Efficiency, then renewable energy].  
 +
Before sizing a photovoltaic electrical installation, it is necessary to consider several questions:
  
* Quels sont mes besoins ?
+
*What are my needs?
* Lesquels sont essentiels et incompressibles ?
+
*Which are essential and incompressible?
* L'électricité est-elle la façon la plus efficace de répondre à tous ces besoins ?
+
*Is electricity the most efficient way to meet all these needs?
  
Le détail de ces questionnements appliqués au cas de notre Festival est disponible dans l'onglet "Fichiers" ci-dessus.
+
Detail on these questions applied to the case of our Festival is available in the "Files" tab located above.
  
Pour matérialiser les consommations électriques des équipements du quotidien et pourvoir éventuellement prioriser, le jeu open-source [http://la-revolt.org/ REVOLT] traduit ces consommations en temps de pédalage.
+
To materialize the electricity consumption of everyday equipment and possibly be able to eventually prioritize, the open-source game [http://la-revolt.org/ REVOLT] translates these consumptions in pedaling time.
 
|Step_Picture_00=Remorque_g_n_ratrice_solaire_-_Syst_me__lectrique_Demarche-nW_detail.png
 
|Step_Picture_00=Remorque_g_n_ratrice_solaire_-_Syst_me__lectrique_Demarche-nW_detail.png
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Calculer ses besoins électriques journaliers
+
|Step_Title=Calculate your daily electrical needs
|Step_Content='''Cette étape est la plus importante d'un dimensionnement photovoltaïque autonome'''. Elle aura une grande influence sur le prix, l'autonomie et la durabilité de l'installation.
+
|Step_Content=Me:
 +
'''This step is the most important of an autonomous photovoltaic sizing'''. It will have a big influence on the price, autonomy, and the durability of the installation.
  
Cette étape vous permettra également de voir où se trouvent vos '''gros postes de consommation''' '''électriques''' et de faire des choix en conséquence (Ex: Un four électrique demande 5000W de puissance. L'énergie électrique est-elle la plus pertinente pour répondre à ce besoin ?)
+
This step will permit you to see where your '''large electrical consumption items''' are located and to make choices accordingly. (Ex: An electric oven demands 5000W of power. Is electrical energy the most pertinent to respond to this need?)
  
<br />{{Idea|Il est recommander de ne pas sous-estimer ses besoins et de toujours considérer le cas le plus défavorable !
+
<br />{{Idea|It is recommended to not under estimate your needs and to always consider the worst case!
  
Exemple: Une journée pluvieuse, pendant un week-end, en hiver. Toute la famille est présente. Les lumières sont allumées 9h par jour. On a envie de manger chaud. Beaucoup d'activités se passent en intérieur.
+
Example: A rainy day, during a week-end, in winter. The entire family is present. The lights are on 9 hours a day. They want to eat hot food. Lots of activities are happening inside.
  
 
}}
 
}}
  
Plusieurs logiciels peuvent vous aider au dimensionnement d'une installation solaire. Nous avons utilisé le logiciel libre '''[https://calcpv.net/ CalcPvAutonome]''' développé par [https://david.mercereau.info/calcpvautonome-outil-de-dimensionnement-pour-une-installation-photovoltaique-en-site-isole-autonome/ David Mercereau]. Une [https://conso.calcpv.net/fr?from=CalcPvAutonome interface dédiée] vous permet de calculer vos besoins électriques journaliers. On réalise ce qu'on appelle un '''audit énergétique''' (simplifié).
+
Several softwares can help you in sizing a solar installation. We have used the free software '''[https://calcpv.net/ CalcPvAutonome]''' developed by [https://david.mercereau.info/calcpvautonome-outil-de-dimensionnement-pour-une-installation-photovoltaique-en-site-isole-autonome/ David Mercereau]. A [https://conso.calcpv.net/fr?from=CalcPvAutonome interface dédiée] lets you calculate your daily electrical needs. We came up with what we call an '''Energy audit''' (simplified).
  
Le principe est simple :
+
The principle is simple:
  
*On détaille tous les équipements utilisés
+
*We listed all the equipment being used
*On indique leur puissance (en Watt, W)
+
*We indicate their power (In Watts, W)
*On indique leur durée d'utilisation quotidienne(en heure/jour, h/j)
+
*We indicate the duration of their daily use (in hour/day, h/d)
*On précise si certains équipements sont susceptibles de fonctionner simultanément.
+
*We determine if certain equipment is capable of functioning simultaneously
*L'outil nous sort une consommation d'énergie quotidienne (en watt heure par jour, W.h/j)
+
*The tool gives us a daily energy consumption (in watt per hour by day, W.h/d)
  
<br />{{Info|1=Comment connaitre la puissance d'un équipement ?
+
<br />{{Info|1=How to know the power of a device?
* Regarder sur la notice ou sur l'étiquette de l'appareil lui même. Si vous avez seulement la tension U (en Volt, V) et l'intensité I (en Ampère, A), vous pouvez la calculer: P=U x I
+
-Look on the manual or the tag on the device itself. If you only have the voltage U (In Volts, V) and the intensity I (In Amps, A), you can calculate it: P=U x I
*Se procurer un Wattmètre (~10€). Il se branche entre la prise et votre appareil et vous indique précisément sa puissance instantanée}}<br />{{Warning|Certains appareil ne consomment pas la même quantité d'énergie en permanence. Par exemple, même si un réfrigérateur est branché en permanence, il ne consomme de l'énergie que lorsque la température intérieure dépasse un certain niveau.
+
-Get a Wattmeter (~10.73 $USD). It is connected between the socket and the device and tells you precisely its power.}}<br />{{Warning l Certain devices do not consume the same quantity of energy all the time. For example, even if a refrigerator is permanently plugged in, it does not consume energy until the interior temperature passes a certain level.
  
Il existe donc une option pour entrer la consommation d'énergie manuellement. Pour cela, il faut la mesurer ! Brancher un Wattmètre-Consomètre sur l'équipement pendant 1 à 7 jours pour avoir la consommation quotidienne moyenne réelle (voir image).}}<br />Dans le cas de notre Festival, on avons ainsi évalué nos besoins électriques (voir image) :
+
There is also the option to enter the energy consumption manually. For that, you have to measure it! Connect a Wattmeter-Consometer to the equipment for 1 to 7 days to have the actual daily consumption (see image).}}<br /> In the case of our Festival, we have thus evaluated our electrical needs (see image) :
  
*Besoins électriques journaliers: 4080Wh/j
+
*Daily electrical needs: 4080Wh/d
*Besoin en puissance électrique maximum: 177W <br />
+
*Maximum electrical power need: 177W <br />
  
Nous avons volontairement choisi de '''ne pas alimenté des appareils électriques gourmands''' '''en énergie par de l'électricité''' !
+
We have deliberately chosen to '''not fuel the power hungry devices''' '''in energy by electricity''' !
  
>La cuisine (pour 100 personnes) a été réalisé à l'aide d'un réchaud à bois.
+
>The kitchen (for 100 people) was made using a wood-burning stove.
  
> Pour servir des boissons fraiches, nous avons convenu d'un partenariat avec la criée de Concarneau qui produit de la glace en permanence et l'avons stocké dans un congélateur débranché (vs 4800Wh/j). De même, les tireuses à bières sont gelés directement avec de la glace et restent débranchées (vs 5600Wh/j).
+
> To serve fresh beverages, we have agreed to a partnership with the Concarneau auction that permanently produces ice and stored it in an unplugged freezer (vs.4800Wh/d). In the same way, the beer taps are frozen directly with the ice and stay disconnected (vs 5600Wh/d).
 
|Step_Picture_00=Remorque_g_n_ratrice_solaire_-_Syst_me__lectrique_Screenshot_2022-08-31_at_10-41-01_CalcPvAutonome_Calculer_dimensionner_son_installation_photovolta_que_isol_e_autonome_.png
 
|Step_Picture_00=Remorque_g_n_ratrice_solaire_-_Syst_me__lectrique_Screenshot_2022-08-31_at_10-41-01_CalcPvAutonome_Calculer_dimensionner_son_installation_photovolta_que_isol_e_autonome_.png
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Paramétrages des éléments principaux
+
|Step_Title=Parameters of principal elements
|Step_Content=Une fois les besoins énergétiques entrés dans  [https://calcpv.net/fr?Bj=4080&Pmax=177 CalcPVAutonome], il va falloir entrer quelques paramètres importants pour le dimensionnement.
+
|Step_Content=Once the energy needs are entered in [https://calcpv.net/fr?Bj=4080&Pmax=177 CalcPVAutonome], several important parameters must be entered for the sizing.
  
 
==== '''Paramètres des panneaux solaires (PV):''' ====
 
==== '''Paramètres des panneaux solaires (PV):''' ====
  
*'''L'inclinaison des PV''': La position du Soleil dans le ciel varie en fonction des saisons (haut l'été, bas l'hiver). Il est donc recommandé d'adapter la positions de ses PV pour être perpendiculaire aux rayons. En France, on recommande 30° d'inclinaison en été et 60° en hiver.
+
*'''Inclination of the PV''': The position of the sun in the sky varies in accordance with the seasons (high in the summer, low in the winter). It is therefore recommended to adapt the positions of the PV to be perpendicular to the rays. In France, we recommend 30° of inclination in the summer and 60° in the winter.
**Si les PV sont fixes sur le toit, on recommande la position pendant la période la plus défavorable en production, l'hiver, donc 60°.
+
**If the PV are attached to the roof, we recommend the position during the worst period of production, winter, so 60°.
**<u>Pour la remorque</u>, nous avons choisi 30° car son utilisation est plutôt prévue pendant la saison estivale. Mais de toute façon l'angle d'inclinaison est modifiable sur la remorque.
+
**<u>For the trailer</u>, we have chosen 30° because its use is more likely during the summer season. But the incline angle can always be changed on the trailer.  
*'''L'orientation des PV''': Il s'agit de déterminer l'angle des PV avec le Soleil. S'ils font face au Sud, on entre 0°. Sinon, voir image.
+
*'''Orientation of the PV''': One should determine the angle of the SP with the sun. If they face south, they should be at  0°. If not, see image.
*'''Autonomie souhaitée''': Vais-je utiliser mes PV toute l'année ou ponctuellement ? <u>Pour la remorque</u>, l'utilisation sera "saisonnière", de Juin à Septembre globalement.
+
*'''Desired autonomy''': Will I use my PV all year or punctually? <u>For the trailer</u>, the use will be seasonal, from June to September globally.
*'''Technologie de PV:''' Même si les différences sont minimes entre poly et monocristallin (voir [https://www.youtube.com/watch?v=rGh_dKg383I comparatif]), nous avons choisi "Monocristallin" qui sont les plus récents.
+
*'''Technology of Solar Panels:''' Even if the differences are minimal between poly and monocristalin (see [https://www.youtube.com/watch?v=rGh_dKg383I comparatif]), we have chosen monocristallin because they are the most recent.
  
 
<br />
 
<br />
Ligne 221 : Ligne 237 :
 
==== '''Paramètres du parc de batteries''' ====
 
==== '''Paramètres du parc de batteries''' ====
  
*'''Nombre de jours d'autonomie souhaités''': Cela représente le nombre de jours consécutifs sans soleil auquel vous pouvez faire face. Ce paramètre a une grande influence sur la capacité du parc batterie et donc sur le coût de l'installation.   <u>Pour la remorque,</u> nous avons choisi la durée moyenne d'un Festival sur une journée, c'est-à-dire 8 heures. Cela permet d'avoir un bloc batterie qui reste mobile.
+
*'''Number of days of desired autonomy''': This represents the number of consecutive days without sun that you can get by. This parameter has a big influence on the capacity of the battery bank and therefore on the installation cost. <u>For the trailer,</u> we have chosen the average duration of a festival over one day, which is 8 hours. This lets us have a battery pack that remains mobile.  
*'''Technologie de batterie''': Pour choisir se référer au tutoriel "[[Fonctionnement, entretien et régénération de batteries au plomb]]". Sinon, laisser "Auto." par défaut.
+
*'''Battery Technology''': To choose refer to the tutorial "[[Operation, maintenance and regeneration of lead acid batteries]]". Otherwise, leave "auto." by default.
  
 
<br />
 
<br />
Ligne 228 : Ligne 244 :
 
==== '''Câblage''' ====
 
==== '''Câblage''' ====
  
*Si vous avez une idée de l'emplacement des panneaux PV par rapport au local technique, préciser ces distances. Dans le doute, surestimer un peu.
+
*If you have an idea about the location of the SP related to local technique, specify these distances. If in doubt, overestimate a little.
  
 
<br />
 
<br />
Ligne 234 : Ligne 250 :
 
==== '''Localisation géographique:''' ====
 
==== '''Localisation géographique:''' ====
  
*Préciser votre emplacement. Les données de rayonnement moyen par mois sont calculées via la base de données [https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html PVGIS].
+
*Specify your location. The average radiation data per month is calculated via the database [https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html PVGIS].
  
 
<br />
 
<br />
Ligne 241 : Ligne 257 :
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Dimensionnement des élèments principaux
+
|Step_Title=Sizing of principal elements
|Step_Content=Une fois les paramètres entrés, on lance le calcul !
+
|Step_Content=Once the parameters are entered, we begin the calculation!
  
[https://calcpv.net/fr?Ni=2&Bj=4080&Pmax=177&lat=47.900478&lon=-3.947118&Ej=&inclinaison=30&orientation=0&periode=partielle&periodeDebut=6&periodeFin=8&ModPv=auto&TypePv=monocristalin&PersoPvW=&PersoPvVdoc=&PersoPvIsc=&Rb=0.85&Ri=0.87&Aut=0.3&U=0&DD=30&Mod CalcPVAutonome] propose un dimensionnement du matériel nécessaire en accord avec ces paramètres. Celui-ci est donné à titre indicatif et demande à être analysé. Dans notre cas, nous avons réajuster en fonction du matériel déjà disponible dont nous disposions.
+
[https://calcpv.net/fr?Ni=2&Bj=4080&Pmax=177&lat=47.900478&lon=-3.947118&Ej=&inclinaison=30&orientation=0&periode=partielle&periodeDebut=6&periodeFin=8&ModPv=auto&TypePv=monocristalin&PersoPvW=&PersoPvVdoc=&PersoPvIsc=&Rb=0.85&Ri=0.87&Aut=0.3&U=0&DD=30&Mod CalcPVAutonome] Proposes an estimate of necessary material in accordance with these parameters. This is given for information only and must be analyzed. In our case, we have readjusted accordingly with the material already available to us that we used.
  
 
<br />
 
<br />
Ligne 250 : Ligne 266 :
 
===='''Panneaux photovoltaïques :'''====
 
===='''Panneaux photovoltaïques :'''====
  
Pour satisfaire nos besoins journaliers de 4080Wh/j, une puissance minimale de PV de 937W est nécessaire (calcul détaillé par le logiciel). Le logiciel nous indique que 5 panneaux monocristallins de 190W pourraient convenir.
+
To satisfy our daily needs of 4080Wh/d, a minimal SP power of 937W is required (detailed calculations done by the software). The software tells us that 5 monocrystalline panels of 190W would work.
  
Mais 5 panneaux étant trop encombrants pour notre remorque + nous avions déjà 1 panneau solaire de 330W. '''Nous''' '''avons choisi 3 panneaux de 330W pour une puissance totale de 990W'''.             
+
But 5 panels were too cumbersome for our trailer + we already had 1 solar panel of 330W. '''We''' '''have chosen 3 panels of 330W for a total power of 990W'''.             
  
 
===='''Batteries''': ====
 
===='''Batteries''': ====
  
Généralement, la tension d'un parc batterie est déterminée en fonction de la puissance des PV:
+
Generally, the voltage of a battery pack is determined in accordance with the power of the SP:
  
 
*<500W: 12V
 
*<500W: 12V
Ligne 262 : Ligne 278 :
 
*>1500W: 48V
 
*>1500W: 48V
  
Dans notre cas, nous avons 990W de PV, donc la '''tension finale''' de notre parc batterie sera de '''24V'''.
+
In our case, we have 990W of SP, therefore the '''final voltage''' of our battery pack will be '''24V'''.
  
Pour permettre une autonomie de 8h (~0,3j), le logiciel calcule la '''capacité nominale''' des batteries de '''170Ah''' en C10. (Voir détail calcul en image)
+
To allow an autonomy of 8 hours (~0.3d), the software calculates that the '''nominal capacity''' of batteries of  '''170Ah''' en C10. (See detailed calculation in image)
  
Or, pour assurer la longévité du parc batteries, le courant de charge de celui-ci ne doit pas dépasser 20% de sa capacité nominale. (Voir [[Fonctionnement, entretien et régénération de batteries au plomb]])
+
However, to ensure the longevity of the battery packs, their charging current must not exceed 20% of their normal capacity. (See [[Operation, maintenance and regeneration of lead acid batteries]])
  
Soit: 170 x 20% = 34A. <br />Or avec 990W de PV le courant de charge est de 990 / 24 = 41,25A.
+
That is: 170 x 20% = 34A. <br /> Or, with 990W of SP the charging current is 990 / 24 = 41,25A.
  
On peut choisir de brider la production des PV grâce au régulateur de charge, mais généralement on conseille d'augmenter la capacité du parc batteries en conséquence. Donc ici, 41,25 x 100 / 20 = '''206Ah'''.
+
You can choose to restrict the production of SP thanks to the charge regulator, but generally we advise you to increase the capacity of the battery packs in consequence. So here, 41,25 x 100 / 20 = '''206Ah'''.
  
Ayant trouvé une bonne occasion, nous avons finalement opté pour l'achat d'un parc de [[Fonctionnement, entretien et régénération de batteries au plomb|batteries de traction régénérées]] de 240Ah. '''Il consiste en 12 batteries de 240Ah-2V assemblées en série pour avoir une tension de 24V.'''  Cela fait augmenter notre autonomie à 10h.                                 
+
Having found a good opportunity, we have finally opted for the purchase of a set of battery packs [[Operation, maintenance and regeneration of lead acid batteries l regenerated traction batteries]] of 240Ah. It consists of 12 240Ah-2V batteries assembled in a series to have a voltage of 24V. This will raise our autonomy to 10 hours.                                 
  
 
===='''Régulateur de charge :'''====
 
===='''Régulateur de charge :'''====
  
Les caractéristiques du régulateur de charge sont déterminées en fonction des caractéristiques de courant maximum sortant des PV. Nous avons donc besoin des caractéristiques des PV données par leur fiche technique ou à l'arrière des panneaux. Il faut connaître la "Tension en Circuit Ouvert" '''(V<sub>oc</sub>)''' et l' "Intensité de Court-Circuit" '''(I<sub>sc</sub>)''' des PV.
+
The characteristics of the charge regulator are determined in accordance with the characteristics of the maximum current leaving the SP. We therefore need the characteristics of SP given by their technical file or on the back of the panels. It is necessary to know the " Open Circuit Voltage " '''(V<sub>oc</sub>)''' and the "Intensity of Short-Circuit Current " '''(I<sub>sc</sub>)''' of SP.
  
Dans notre cas, pour chaque panneau : V<sub>oc</sub>= 40,49V  et I<sub>sc</sub>= 10,25A
+
In our case, for each panel: V<sub>oc</sub>= 40,49V  and I<sub>sc</sub>= 10,25A
  
Lorsqu'on ajoute les panneaux en série: V<sub>oc_tot</sub>= 121,5V et  I<sub>sc_tot</sub>= 10,25A
+
When adding the panels in series: V<sub>oc_tot</sub>= 121,5V et  I<sub>sc_tot</sub>= 10,25A
  
En prenant des marges de sécurité de 20%, un régulateur MPPT 150V 20A aurait pu convenir.
+
In taking safety margins of 20%, a 150V 20A MPPT regulator might have been suitable.
  
Ayant eu l'occasion de récupérer un régulateur '''Conext MPPT 150V/60A''', nous avons opté pour ce modèle.
+
Having had the opportunity to recover a "'Conext MPPT 150V/60A regulator"', we opted for this model.
  
  
 
===='''Convertisseur - Onduleur''' : ====
 
===='''Convertisseur - Onduleur''' : ====
  
Le choix du convertisseur s'effectue en fonction de la puissance que doit délivrée l'installation (en AC) et en fonction de la tension du parc batterie.
+
The choice of converter is decided in accordance with the power that the installation must deliver (in AC) and in accordance with the voltage of the battery pack
  
Nous souhaitions pouvoir ponctuellement alimenter des appareils allant jusqu'à 1000W.
+
We wanted to be able to occasionally power devices up to 1000W.
  
Nous avons opté pour un '''convertisseur Victron 24V/1200VA''' qui monte en puissance maximum de sortie à 1200W avec des pointes possibles à 2400W.
+
We have opted for a "'Victron 24V/1200VA"' converter that increases the maximum output power of 1200W with possible peaks up to 2400W.
  
 
<br />
 
<br />
Ligne 299 : Ligne 315 :
 
===='''Contrôleur de batterie'''====
 
===='''Contrôleur de batterie'''====
  
Pour connaitre l'état de charge de nos batteries et en prolonger la durée de vie, nous avons choisi d'utiliser un contrôleur batterie (fortement conseillé).
+
To know the charging state of our batteries and to prolong their lifespan, we have chosen to use a battery monitor (strongly recommended).
 
|Step_Picture_00=Remorque_g_n_ratrice_solaire_-_Syst_me__lectrique_schema-systeme-photovoltaique-autonome-avec-batterie.jpg
 
|Step_Picture_00=Remorque_g_n_ratrice_solaire_-_Syst_me__lectrique_schema-systeme-photovoltaique-autonome-avec-batterie.jpg
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Dimensionnement des protections électriques
+
|Step_Title=Sizing of electrical protections
 
|Step_Content====='''Quelles protections électriques ?'''====
 
|Step_Content====='''Quelles protections électriques ?'''====
  
*Des dispositifs de sectionnement et de coupure ('''disjoncteurs et/ou interrupteur-sectionneur''') doivent être installés à différents endroits pour installer et maintenir le système en sécurité :  
+
*Isolating and breaking devices ("'circuit breaker and/or switch - disconnector"') must be installed in different places to install and maintain the system safely :
**Entre les PV et le régulateur de charge
+
**Between the SP and the charge controller
**Entre le régulateur de charge et les batteries
+
**Between the charge controller and batteries
**Entre les batteries et le convertisseur
+
**Between the batteries and the inverter
**Entre les batteries et les charges DC
+
**Between the batteries and the DC loads
  
Ces dispositifs se placent sur les 2 polarités (+ et -)
+
The devices are placed on the 2 polarities (+ and -)
  
*Des dispositifs de protection contre les surintensités ('''fusibles''' '''ou disjoncteurs''') doivent être installés pour protéger le matériel de conditions de très forts courants :
+
*Overcurrent protective devices ("'fuses or circuit breakers"') must be installed to protect the equipment from high current conditions:
**En sortie de PV, sur les deux polarités (+ et -), contre les risques de surintensité sous la forme de [http://www.photovoltaique.guidenr.fr/informations_techniques/conception-photovoltaique-raccordee-reseau/courant-retour.php courant retour]. <u>Pas nécessaire, si on a seulement une seule chaine de PV en série.</u>
+
**At the SP output, on the two polarities (+ and -), against the risks of overcurrent under the forme of [http://www.photovoltaique.guidenr.fr/informations_techniques/conception-photovoltaique-raccordee-reseau/courant-retour.php courant retour]. <u>Not necessary, if you have only one channel of SP in series. </u>
**En sortie de batterie, sur le +, contre les forts courants de décharge.
+
**At the battery output, on the +, against the high discharge currents.
  
{{Info|Le choix entre un fusible et un disjoncteur est une question de prix, de rapidité de déclenchement et de facilité de manutention. Un fusible coupe le circuit plus rapidement qu'un disjoncteur. Ce qui est intéressant pour protéger du matériel onéreux. Par contre, un disjoncteur peut-être utilisé plusieurs fois quand un fusible devra être remplacer à chaque fois qu'il saute. Mais, un disjoncteur est beaucoup plus cher qu'un fusible.}}
+
{{Info|The choice between a fuse and a circuit breaker is a question of price, of speed and ease of handling. A fuse cuts the circuit faster than a circuit breaker. This is of interest for protecting the expensive equipment. On the other hand, a circuit breaker can be used multiple times while a fuse must be replaced every time it blows. But, a circuit breaker is much more expensive than a fuse. }}
  
 
===='''Dimensionnement des protections électriques''' : ====
 
===='''Dimensionnement des protections électriques''' : ====
  
'''Entre les PV et le régulateur de charge :'''
+
'''Between the SP and the charge controller:'''
  
*Fusibles en sortie de chaque string de PV en série (obligatoire seulement si on a plus d'une string/chaîne de PV, <u>ce qui n'est pas le cas sur la remorque</u>):
+
*Fuses at the output of each SP string in series (obligatory only if you have more than one SP string/channel, which is not the case on the trailer</u>):
 
**''1,5 I<sub>sc_tot</sub>< I<sub>fuse</sub> < 2,4 I<sub>sc_tot</sub>''
 
**''1,5 I<sub>sc_tot</sub>< I<sub>fuse</sub> < 2,4 I<sub>sc_tot</sub>''
 
**''1,1V<sub>oc_tot</sub> < V<sub>fuse</sub>''
 
**''1,1V<sub>oc_tot</sub> < V<sub>fuse</sub>''
Ligne 330 : Ligne 346 :
 
<br />
 
<br />
  
*Disjoncteur ou interrupteur-sectionneur entre les PV et le régulateur de charge  
+
*Circuit breaker or switch-disconnector between the SP and the charge controller
 
**''I> 1,25 I<sub>sc</sub>''
 
**''I> 1,25 I<sub>sc</sub>''
**''V >1,15 V<sub>oc_tot</sub>'' <br />Donc pour la remorque, nous avons choisi un disjoncteur respectant ces conditions :
+
**''V >1,15 V<sub>oc_tot</sub>'' <br />So for the trailer, we have chosen a circuit breaker that meets these conditions :
 
**'''''I >'' 12,8A'''
 
**'''''I >'' 12,8A'''
 
**'''''V >'' 140V'''
 
**'''''V >'' 140V'''
  
'''Entre le régulateur de charge, l'onduleur et les batteries''':
+
'''Between the charge regulator, the inverter and the batteries''':
  
*Fusible, à placer sur le câble positif, en entrée de la batterie:  
+
*Fuses, to be placed on the positive cable, at the battery input:  
 
**''I<sub>fuse</sub>'' > ''I<sub>op</sub>''
 
**''I<sub>fuse</sub>'' > ''I<sub>op</sub>''
  
I<sub>op</sub> étant le courant en opération. Il diffère si on est en mode charge ou décharge des batteries :
+
I<sub>op</sub> Being the current in operation. It varies if you are in battery charging or discharging mode :
  
*En mode charge, il est équivalent au courant maximum fourni par le Régulateur de Charge. Soit, I'''<sub>op</sub>= 60A''' dans notre cas.
+
*In charging mode, it is equivalent to maximum current provided by the Charge Regulator. That being,I'''<sub>op</sub>= 60A''' in our case.
*En mode décharge, il est équivalent au courant maximum tiré par l'onduleur. Soit, I<sub>op</sub>= P<sub>max_inv</sub>/ (rendement de l'onduleur *''V<sub>bat</sub>'' )= 2400W / (0,97*24V) = '''104A'''
+
*In discharging mode, it is equivalent to the maximum current pulled by the inverter. Let, I<sub>op</sub>= P<sub>max_inv</sub>/ (inverter output*''V<sub>bat</sub>'' )= 2400W / (0,97*24V) = '''104A'''
  
On choisit la valeur maximale donc '''''I<sub>fuse</sub>''>104 A'''. Nous avons choisi un fusible MEGA 125A 32V de chez Victron Energy.
+
"'We chose the maximum value so"'I<sub>fuse</sub>''>104 A'''. We have chosen a MEGA 125A 32V fuse from Victron Energy.
  
*Disjoncteur ou interrupteur-sectionneur:
+
*Circuit breaker or switch-disconnector between the SP and the charge controller
**''I<sub>dis</sub>'' > ''I<sub>op</sub>''
+
**''I> 1,25 I<sub>sc</sub>''
**''V<sub>dis</sub>''>''1,15 V<sub>oc_tot</sub>'' <br />Donc pour la remorque, nous avons choisi un disjoncteur de 125A respectant ces conditions :
+
**''V >1,15 V<sub>oc_tot</sub>'' <br />So for the trailer, we have chosen a circuit breaker that meets these conditions :
**'''''I >'' 104 A'''
+
**'''''I >'' 12,8A'''
**'''''V >'' 140 V'''
+
**'''''V >'' 140V'''
  
 
<br />
 
<br />
Ligne 358 : Ligne 374 :
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Dimensionnement du câblage
+
|Step_Title=Wiring sizing
|Step_Content=Pour éviter des pertes par échauffement, voire des risques d'incendie, il est important de bien dimensionner tous les câbles de l'installation. C'est-à-dire, calculer la section minimale (en mm²) du câble.
+
|Step_Content=To avoid the losses due to overheating, or even fire risks, it is important to size all the installation cables correctly. That is to say, calculate the minimum section (in mm²) of the cable
  
La formule est la suivante :
+
The formula is the following :
 
  S > ρ*2*L*I / ε*U
 
  S > ρ*2*L*I / ε*U
  
Pour cela il faut connaître:
+
For this you need to know:
  
*Le courant maximal qui va traverser le câble sur le tronçon étudié ( I, en Ampères)
+
*The maximum current that will cross the cable on the studied segment ( l, in Amps)
*La tension sur le tronçon étudié (U, en Volt)
+
*The voltage of on the studied segment (U, in Volts)
*La longueur du câble sur le tronçon étudié (L, en mètres)
+
*The length of the cable on the studied section (L, in meters)
*Son matériau et donc sa résistivité (ρ, en Ohm.mm²/m). Pour le cuivre, on prend généralement ρ=0,023 Ω.mm²/m
+
*The material and also its resistivity (ρ, en Ohm.mm²/m). For the copper, we generally take ρ=0,023 Ω.mm²/m
*Chute de tension maximale autorisée ε. On choisit souvent 1% soit ε=0,01
+
*Maximum  allowable voltage drop ε. we often choose  1% or ε=0,01
{{Warning|Les panneaux solaires doivent être impérativement raccordés avec du câble spécifique aux installations solaires photovoltaïques (résistant à la chaleur et aux UV)
+
{{Warning|The solar panels must be connected with a cable specific to photovoltaic installations (resistant to heat and UV rays)
}}On répartit donc l'installation en 3 tronçons:
+
}}The installation is therefore decided into in 3 segments:
  
* Des panneaux solaires au régulateur de charge
+
*From solar panels to charge controller
* Du régulateur aux batteries
+
*From regulator to batteries
* Du régulateur à l'onduleur
+
*From regulator to inverter
  
 
<br />
 
<br />
 
{| class="wikitable"
 
{| class="wikitable"
 
|+
 
|+
!'''Entre les PV et le régulateur de charge'''
+
!'''Between the SP and the charge regulator'''
!'''Entre le régulateur de charge et les batteries'''
+
!'''Between the charge regulator and the batteries''
!'''Entre les batteries''' et l'onduleur
+
!'''Between the batteries"' and the inverter
 
|-
 
|-
 
|S >  0,023*2*4* 10,25 / 121,5*0,01
 
|S >  0,023*2*4* 10,25 / 121,5*0,01
Ligne 398 : Ligne 414 :
 
|}
 
|}
  
A partir des sections calculées, il convient ensuite de choisir la section commerciale supérieure :
+
From these calculated sections, it is then necessary to choose the upper commercial section:  
 
<br />
 
<br />
 
{| class="wikitable"
 
{| class="wikitable"
!'''Entre les PV et le régulateur de charge'''  
+
!'''Between the SP and the charge regulator'''  
!'''Entre le régulateur de charge et les batteries'''
+
!'''Between the charge regulator and the batteries'''
!'''Entre les batteries''' et l'onduleur
+
!'''Between the batteries''' and the inverter
 
|-
 
|-
 
|S = 2,5mm²
 
|S = 2,5mm²
Ligne 409 : Ligne 425 :
 
|S=10 ou 16 mm²
 
|S=10 ou 16 mm²
 
|}
 
|}
On peut vérifier les valeurs d'intensité maximale admissible correspondant à ces sections dans des abaques (voir image).
+
We can verify the maximum allowable intensity values corresponding to these sections in the counting frame (see image).
 
|Step_Picture_00=Remorque_g_n_ratrice_solaire_-_Syst_me__lectrique_Screenshot_2022-09-12_at_17-37-36_Dimensionnent_des_c_bles_photovolta_ques.png
 
|Step_Picture_00=Remorque_g_n_ratrice_solaire_-_Syst_me__lectrique_Screenshot_2022-09-12_at_17-37-36_Dimensionnent_des_c_bles_photovolta_ques.png
 
}}
 
}}
 
{{Notes
 
{{Notes
|Notes=Document rédigé par Guénolé Conrad dans le cadre du projet Scholar Grid. Un projet à l'initiative de la [https://www.se.com/fr/fr/about-us/sustainability/foundation/ Fondation Schneider Electric] avec le support technique d'[http://www.energies-sans-frontieres.org/ Energie Sans Frontières], [https://www.atelier21.org Atelier 21] et du  [https://lowtechlab.org/fr Low-tech Lab]
+
|Notes=Document by Guénolé Conrad within the framework of the Scholar Grid project. A project initiative of the [https://www.se.com/fr/fr/about-us/sustainability/foundation/ Schneider Electric Foundation] with the technical support of [http://www.energies-sans-frontieres.org/ Energie Sans Frontières], [https://www.atelier21.org Atelier 21] and the [https://lowtechlab.org/en Low-tech Lab]
  
 
<br />
 
<br />
  
*Pour reprendre en détail les bases, le fonctionnement et le dimensionnement d'une installation solaire autonome, le '''très bon [https://e-learning.ines-solaire.org/course/index.php?categoryid=194 e-learning]''' [https://e-learning.ines-solaire.org/course/index.php?categoryid=194 de l'INES], l'Institut National de l'Energie Solaire (en anglais) ou le site [http://www.photovoltaique.guidenr.fr/informations_techniques/ GuidEnR Photovoltaïque] (en français)
+
*To go over the basic details, operation and sizing of an autonomous solar installation, the '''very good [https://e-learning.ines-solaire.org/course/index.php?categoryid=194 e-learning]''' [https://e-learning.ines-solaire.org/course/index.php?categoryid=194 of l'INES], the National Institute of Solar Energy (in English) or the site [http://www.photovoltaique.guidenr.fr/informations_techniques/ GuidEnR Photovoltaïque] (in French)
*[https://fr.wikibooks.org/wiki/%C3%89lectricit%C3%A9/Notions_de_s%C3%A9curit%C3%A9_%C3%A9lectrique#Les_effets_sur_le_corps_humain Notions de sécurité électrique] et effets sur le corps humain.
+
*[https://fr.wikibooks.org/wiki/%C3%89lectricit%C3%A9/Notions_de_s%C3%A9curit%C3%A9_%C3%A9lectrique#Les_effets_sur_le_corps_humain Notions de sécurité électrique] and effects on the human body.
*Outil de prédimensionnement d'installation solaire photovoltaïque en autoconsommation conçu par l'INES: [https://autocalsol.ines-solaire.org/ AutoCalSol]
+
*Pre-sizing tool for photovoltaic solar installation in self consumption designed by l'INES: [https://autocalsol.ines-solaire.org/ AutoCalSol]
*En France, pour se former de manière plus professionnelle, l'INES propose des [https://www.ines-solaire.org/renforcer-capacites/se-former/ formations sur l'énergie solaire]
+
*In France, to train in a more professional way, l'INES offers [https://www.ines-solaire.org/renforcer-capacites/se-former/ formations sur l'énergie solaire]
*Le tutoriel de construction de la [[Remorque génératrice solaire - Structure|structure de soutien des panneaux solaires]].<br />
+
*The  construction tutorial for the [[Solar generator trailer - Structure|Support structure for solar panels]]. <br />
 +
 
 +
 
 +
English Translation by Suzanne Kane
 
}}
 
}}
 
{{PageLang
 
{{PageLang

Version actuelle datée du 12 septembre 2023 à 14:02

Tutorial de avatarScholar Grid Project | Catégories : Énergie

This tutorial presents the sizing and construction of an electrical system for a solar generator (1 kWp or ‘kilowatt peak’) which can be moved by bicycle. This structure was designed to fit on the CHARRETTE, an assisted trailer designed by the Véloma association, whose plans are freely available.

Licence : Attribution (CC BY)

Introduction

This trailer is a functional demonstration designed as a part of the Scholar Grid project.

Supported and piloted by the Fondation Schneider Electric in partnership with these associations Low-tech Lab,Énergies sans Frontières and Atelier 21, this project intends to investigate innovative solutions to provide affordable and clean electric energy to training centers that train future electricians. The energy systems created by the technical experts and the teachers of the training centers, will be implemented by students and serve as a pedagogical base.

The fields of investigation of this project were the following:

  • The recovery and repair of damaged photovoltaic panels.
  • The recovery and regeneration of used lead batteries.
  • Direct current microgrids.


To test these techniques in real conditions, Low-tech Lab constructed a mobile generator trailer. With the power of 1kW, it combines the repaired second hand solar panels and the regenerated lead batteries. This was designed on the basis of concrete needs: to provide electricity for the Festival Low-tech organized in Concarneau in July of 2022.

Beginning with this concrete case, "the tutorial details the general steps of sizing a photovoltaic installation in self-consumption". The context, the preliminary evaluation of needs and the choice of adapted energy sources are explained in detail in the document "An energy-autonomous Festival?’ In the ‘Files’ section".

This tutorial is addressed to people with a basic level of knowledge in electricity and in the components of photovoltaic installation. If that is not your case, do not hesitate to release the basics via E-leaning of INES (in English) or via the GuidEnR Photovoltaic website. (Links in the ‘Notes and references’ section).
This tutorial does not cover the basic notions of electricity and the associated safety instructions. These manipulations can become very dangerous! It is your responsibility to ensure you work safely.

Matériaux


Quantity Designation New Material Price Project Material Price (donation, second-hand, reclaimed)
3 Peimar 330W Solar Pannel 500 105
1 Victor Energy Phoenix 24V/1200VA Inverter 503 200
1 Schneider Electric Connext 60A/150V MPPT charge controller 650 0
12 Hawker 4PzS240 traction battery - 2V 240Ah 1980 650
1 Victron Energy BMV700 battery controller + crimped cable + wall bracket + VE Direct Bluetooth Smart Dongle 250 250
1 Fuse MEGA-Fuse 125A / 32V (x5) + Fuse holder MEGA Victron Energy 33 33
1 Schneider Electric C120N 125A Circuit Breaker 320 0
2 Schneider Electric iC60N 63A Circuit Breaker 25 0
1 Schneider Electric Resi9 10A Circuit Breaker 15 0
1 Schneider Electric 30mA/40A differential Circuit Breaker 90 0
16m 1x4mm² red/black solar cable with MC4 connector 24 0
1 Male MC4 Connector 4 0
1 Female MC4 Connector 4 0
6m Red / blue / green-yellow cable 1x16mm² 16 16
6 Tubular battery terminal 16mm²-12 4 4
2 Tubular battery terminal 35mm² - 10 2,6 2,6
6 Gray PG16 cable gland + Washer 11,5 11,5
6 Gray PG11 cable gland + Washer 9,5 9,5
1 Bloc multiprise extérieur IP44 14 14
TOTAL 4442 € (~4,764.22 $USD) 1282 € (~1,375.00 $USD)

Outils

- Tournevis

- Pince coupante

- Clés à pipes

- Clés plates

- Multimètre

- Perceuse

- Pince à sertir pour les cosses de batterie (idéalement)

Étape 1 - Evaluate your needs and identify the most suitable energy sources.

The cheapest and cleanest energy is that which we do not produce/consume !

In line with this principle, this approachnégaWatt proposes to rethink our vision of energy by applying a three step approach: Sobriety, Efficiency, then renewable energy. Before sizing a photovoltaic electrical installation, it is necessary to consider several questions:

  • What are my needs?
  • Which are essential and incompressible?
  • Is electricity the most efficient way to meet all these needs?

Detail on these questions applied to the case of our Festival is available in the "Files" tab located above.

To materialize the electricity consumption of everyday equipment and possibly be able to eventually prioritize, the open-source game REVOLT translates these consumptions in pedaling time.




Étape 2 - Calculate your daily electrical needs

Me: This step is the most important of an autonomous photovoltaic sizing. It will have a big influence on the price, autonomy, and the durability of the installation.

This step will permit you to see where your large electrical consumption items are located and to make choices accordingly. (Ex: An electric oven demands 5000W of power. Is electrical energy the most pertinent to respond to this need?)


It is recommended to not under estimate your needs and to always consider the worst case!

Example: A rainy day, during a week-end, in winter. The entire family is present. The lights are on 9 hours a day. They want to eat hot food. Lots of activities are happening inside.

Several softwares can help you in sizing a solar installation. We have used the free software CalcPvAutonome developed by David Mercereau. A interface dédiée lets you calculate your daily electrical needs. We came up with what we call an Energy audit (simplified).

The principle is simple:

  • We listed all the equipment being used
  • We indicate their power (In Watts, W)
  • We indicate the duration of their daily use (in hour/day, h/d)
  • We determine if certain equipment is capable of functioning simultaneously
  • The tool gives us a daily energy consumption (in watt per hour by day, W.h/d)

How to know the power of a device?

-Look on the manual or the tag on the device itself. If you only have the voltage U (In Volts, V) and the intensity I (In Amps, A), you can calculate it: P=U x I

-Get a Wattmeter (~10.73 $USD). It is connected between the socket and the device and tells you precisely its power.

{{Warning l Certain devices do not consume the same quantity of energy all the time. For example, even if a refrigerator is permanently plugged in, it does not consume energy until the interior temperature passes a certain level.

There is also the option to enter the energy consumption manually. For that, you have to measure it! Connect a Wattmeter-Consometer to the equipment for 1 to 7 days to have the actual daily consumption (see image).}}
In the case of our Festival, we have thus evaluated our electrical needs (see image) :

  • Daily electrical needs: 4080Wh/d
  • Maximum electrical power need: 177W

We have deliberately chosen to not fuel the power hungry devices in energy by electricity !

>The kitchen (for 100 people) was made using a wood-burning stove.

> To serve fresh beverages, we have agreed to a partnership with the Concarneau auction that permanently produces ice and stored it in an unplugged freezer (vs.4800Wh/d). In the same way, the beer taps are frozen directly with the ice and stay disconnected (vs 5600Wh/d).




Étape 3 - Parameters of principal elements

Once the energy needs are entered in CalcPVAutonome, several important parameters must be entered for the sizing.

Paramètres des panneaux solaires (PV):

  • Inclination of the PV: The position of the sun in the sky varies in accordance with the seasons (high in the summer, low in the winter). It is therefore recommended to adapt the positions of the PV to be perpendicular to the rays. In France, we recommend 30° of inclination in the summer and 60° in the winter.
    • If the PV are attached to the roof, we recommend the position during the worst period of production, winter, so 60°.
    • For the trailer, we have chosen 30° because its use is more likely during the summer season. But the incline angle can always be changed on the trailer.
  • Orientation of the PV: One should determine the angle of the SP with the sun. If they face south, they should be at 0°. If not, see image.
  • Desired autonomy: Will I use my PV all year or punctually? For the trailer, the use will be seasonal, from June to September globally.
  • Technology of Solar Panels: Even if the differences are minimal between poly and monocristalin (see comparatif), we have chosen monocristallin because they are the most recent.


Paramètres du parc de batteries

  • Number of days of desired autonomy: This represents the number of consecutive days without sun that you can get by. This parameter has a big influence on the capacity of the battery bank and therefore on the installation cost. For the trailer, we have chosen the average duration of a festival over one day, which is 8 hours. This lets us have a battery pack that remains mobile.
  • Battery Technology: To choose refer to the tutorial "Operation, maintenance and regeneration of lead acid batteries". Otherwise, leave "auto." by default.


Câblage

  • If you have an idea about the location of the SP related to local technique, specify these distances. If in doubt, overestimate a little.


Localisation géographique:

  • Specify your location. The average radiation data per month is calculated via the database PVGIS.




Étape 4 - Sizing of principal elements

Once the parameters are entered, we begin the calculation!

CalcPVAutonome Proposes an estimate of necessary material in accordance with these parameters. This is given for information only and must be analyzed. In our case, we have readjusted accordingly with the material already available to us that we used.


Panneaux photovoltaïques :

To satisfy our daily needs of 4080Wh/d, a minimal SP power of 937W is required (detailed calculations done by the software). The software tells us that 5 monocrystalline panels of 190W would work.

But 5 panels were too cumbersome for our trailer + we already had 1 solar panel of 330W. We have chosen 3 panels of 330W for a total power of 990W.

Batteries:

Generally, the voltage of a battery pack is determined in accordance with the power of the SP:

  • <500W: 12V
  • 500 -1500W: 24V
  • >1500W: 48V

In our case, we have 990W of SP, therefore the final voltage of our battery pack will be 24V.

To allow an autonomy of 8 hours (~0.3d), the software calculates that the nominal capacity of batteries of 170Ah en C10. (See detailed calculation in image)

However, to ensure the longevity of the battery packs, their charging current must not exceed 20% of their normal capacity. (See Operation, maintenance and regeneration of lead acid batteries)

That is: 170 x 20% = 34A.
Or, with 990W of SP the charging current is 990 / 24 = 41,25A.

You can choose to restrict the production of SP thanks to the charge regulator, but generally we advise you to increase the capacity of the battery packs in consequence. So here, 41,25 x 100 / 20 = 206Ah.

Having found a good opportunity, we have finally opted for the purchase of a set of battery packs Operation, maintenance and regeneration of lead acid batteries l regenerated traction batteries of 240Ah. It consists of 12 240Ah-2V batteries assembled in a series to have a voltage of 24V. This will raise our autonomy to 10 hours.

Régulateur de charge :

The characteristics of the charge regulator are determined in accordance with the characteristics of the maximum current leaving the SP. We therefore need the characteristics of SP given by their technical file or on the back of the panels. It is necessary to know the " Open Circuit Voltage " (Voc) and the "Intensity of Short-Circuit Current " (Isc) of SP.

In our case, for each panel: Voc= 40,49V and Isc= 10,25A

When adding the panels in series: Voc_tot= 121,5V et Isc_tot= 10,25A

In taking safety margins of 20%, a 150V 20A MPPT regulator might have been suitable.

Having had the opportunity to recover a "'Conext MPPT 150V/60A regulator"', we opted for this model.


Convertisseur - Onduleur :

The choice of converter is decided in accordance with the power that the installation must deliver (in AC) and in accordance with the voltage of the battery pack

We wanted to be able to occasionally power devices up to 1000W.

We have opted for a "'Victron 24V/1200VA"' converter that increases the maximum output power of 1200W with possible peaks up to 2400W.


Contrôleur de batterie

To know the charging state of our batteries and to prolong their lifespan, we have chosen to use a battery monitor (strongly recommended).




Étape 5 - Sizing of electrical protections

Quelles protections électriques ?

  • Isolating and breaking devices ("'circuit breaker and/or switch - disconnector"') must be installed in different places to install and maintain the system safely :
    • Between the SP and the charge controller
    • Between the charge controller and batteries
    • Between the batteries and the inverter
    • Between the batteries and the DC loads

The devices are placed on the 2 polarities (+ and -)

  • Overcurrent protective devices ("'fuses or circuit breakers"') must be installed to protect the equipment from high current conditions:
    • At the SP output, on the two polarities (+ and -), against the risks of overcurrent under the forme of courant retour. Not necessary, if you have only one channel of SP in series.
    • At the battery output, on the +, against the high discharge currents.
The choice between a fuse and a circuit breaker is a question of price, of speed and ease of handling. A fuse cuts the circuit faster than a circuit breaker. This is of interest for protecting the expensive equipment. On the other hand, a circuit breaker can be used multiple times while a fuse must be replaced every time it blows. But, a circuit breaker is much more expensive than a fuse.

Dimensionnement des protections électriques :

Between the SP and the charge controller:

  • Fuses at the output of each SP string in series (obligatory only if you have more than one SP string/channel, which is not the case on the trailer):
    • 1,5 Isc_tot< Ifuse < 2,4 Isc_tot
    • 1,1Voc_tot < Vfuse


  • Circuit breaker or switch-disconnector between the SP and the charge controller
    • I> 1,25 Isc
    • V >1,15 Voc_tot
      So for the trailer, we have chosen a circuit breaker that meets these conditions :
    • I > 12,8A
    • V > 140V

Between the charge regulator, the inverter and the batteries:

  • Fuses, to be placed on the positive cable, at the battery input:
    • Ifuse > Iop

Iop Being the current in operation. It varies if you are in battery charging or discharging mode :

  • In charging mode, it is equivalent to maximum current provided by the Charge Regulator. That being,Iop= 60A in our case.
  • In discharging mode, it is equivalent to the maximum current pulled by the inverter. Let, Iop= Pmax_inv/ (inverter output*Vbat )= 2400W / (0,97*24V) = 104A

"'We chose the maximum value so"'Ifuse>104 A'. We have chosen a MEGA 125A 32V fuse from Victron Energy.

  • Circuit breaker or switch-disconnector between the SP and the charge controller
    • I> 1,25 Isc
    • V >1,15 Voc_tot
      So for the trailer, we have chosen a circuit breaker that meets these conditions :
    • I > 12,8A
    • V > 140V





Étape 6 - Wiring sizing

To avoid the losses due to overheating, or even fire risks, it is important to size all the installation cables correctly. That is to say, calculate the minimum section (in mm²) of the cable

The formula is the following :

S > ρ*2*L*I / ε*U

For this you need to know:

  • The maximum current that will cross the cable on the studied segment ( l, in Amps)
  • The voltage of on the studied segment (U, in Volts)
  • The length of the cable on the studied section (L, in meters)
  • The material and also its resistivity (ρ, en Ohm.mm²/m). For the copper, we generally take ρ=0,023 Ω.mm²/m
  • Maximum allowable voltage drop ε. we often choose 1% or ε=0,01
The solar panels must be connected with a cable specific to photovoltaic installations (resistant to heat and UV rays)
The installation is therefore decided into in 3 segments:
  • From solar panels to charge controller
  • From regulator to batteries
  • From regulator to inverter


Between the SP and the charge regulator 'Between the charge regulator and the batteries Between the batteries"' and the inverter
S > 0,023*2*4* 10,25 / 121,5*0,01 S > 0,023*2*1* 1000 / 24*24*0,01 S > 0,023*2*0,5* 2400 / 24*24*0,01
S> 1,55mm² S>7,9mm² S>9,5mm²

From these calculated sections, it is then necessary to choose the upper commercial section:

Between the SP and the charge regulator Between the charge regulator and the batteries Between the batteries and the inverter
S = 2,5mm² S= 10mm² S=10 ou 16 mm²

We can verify the maximum allowable intensity values corresponding to these sections in the counting frame (see image).




Notes et références

Document by Guénolé Conrad within the framework of the Scholar Grid project. A project initiative of the Schneider Electric Foundation with the technical support of Energie Sans Frontières, Atelier 21 and the Low-tech Lab



English Translation by Suzanne Kane

Commentaires

Published