Semi-removable Mass Stove

Tutorial de avatarLow-tech Lab | Categories : Housing, Energy

Semi-removable inertia mass stove. A mass storage stove or ‘heat storage stove’ is a primary heating device. Its mass, which is made up of heavy material (stone, brick and concrete), stores energy from a fire that burns once during the day (lasting between 1 and 3 hours). Once the fire has gone out, it then continues to give out heat over a prolonged period (for up to 24 hours). Its mass provides thermal inertia which helps to keep an even temperature inside a building (which is why these stoves are often also called “inertia stoves”). The whole of the quantity of wood needed to heat the dwelling is burnt in one go, making it burn hotter which allows complete and more environmentally-friendly combustion. It is a storage device which is designed to absorb the bulk of the energy that is generated from combustion and exhaust gases, which cool down considerably once out of the stove. Accumulated heat is mainly diffused by radiation and, in a few cases, by convection. This particular type of heating, i.e. that uses radiation, is best located in the centre of the dwelling and therefore, most mass stoves these days are positioned in the main room which opens out onto the lounge, dining room and kitchen. As yield tends tend to be in the majority of cases higher than 80%, these stoves are considered to be one of the most efficient wood-fuelled heating devices. Watch the tutorial video here [2]

5 day(s)
300 EUR (€)
Other languages:
British English • ‎español • ‎français
License : Attribution-ShareAlike (CC BY-SA)


The Poelito is a wood-burning inertia stove for small and/or non-fixed dwellings (e.g. motor homes, yurts, caravans, mobile homes, narrow boats etc.). Such dwellings have the following characteristics: - they are less spacious inside and therefore only need a small amount of power to heat. Because of this, a conventional stove is often excessive as it heats the space up too quickly. It therefore needs to burn when it is not giving any real benefit which leads to pollution, soot deposits and poor performance. - Inertia is low which means that there is very little mass that can absorb excess heat and later release it. It therefore gets cold quickly once the source of heat has gone. A storage heater is the perfect answer to these problems.It stores a vast amount of heat and only needs to be burning for 2 hours every 12 to 24 hours; therefore the fire needs to be maintained for less time and heat can be given out over longer periods.

It works on the basis of combining “mass” with “portability”: the sand, which can be easily taken out, provides some of the inertia. If the stove is emptied out then it is easier to move. Whilst in use, the Rocket stove has a vertical feed mechanism which means wood can be supplied to it automatically using gravity. During combustion, the flame is sucked sideways across the bottom which allows air to be supplied from above the fuel. It is an original design guaranteeing efficiency but needs supervision when in use.

This tutorial has been produced by David Mercereau. This is a transcript of work carried out by Vital BIES, who are at the forefront of the idea behind the design of the Poelito and authors of the manual : OoX5gND9xs4qdx8HZaNJ/view.

We would like to thank them for the work they have done for our community. Only the construction and operating instructions are included in this tutorial. Additional options are covered in the Vital manual which include the doors providing access for cleaning and adding extra features such as heated seating or a water heater. We will also not be covering the openings from which the sand is removed as this will add to the complexity of building it. The sand can be removed at any time from the top of the stove.

Video overview



  • Metal drum
* Pipework (tubes of differing diameters and T-tube) 
  • Sewer grate


  • Self-tapping screws,
  • Nuts and bolts


  • Tamper for packing down and applying the concrete,
  • Wire,
  • An old cloth to put in the drum to deaden the noise whilst you are working.


  • Plastic packaging (cellophane),
  • Gaffer tape
  • Masking tape,
  • Corrugated cardboard,
  • Cardboard tubes of 80, 100, 130mm diameters respectively


Health and Safety:

  • Gloves,
  • Goggles,
  • Ear defenders/ earplugs,
  • Dust masks
  • First aid kit containing saline solution in case cements gets into eyes.

For Marking/Measuring:

  • Tape measure,
  • Pencil,
  • Marker
  • String (2 metres approx.),
  • Spirit level

For the Metalwork:

  • Hammer/sledgehammer/chisel,
  • Pincers
  • Adjustable pliers
  • Tin snips (often more practical that using an electric device)
  • Jigsaw + metal blades
  • Clamp
  • Drill + metal drill bits
  • Wire brush for drill
  • Angle grinder + cutting, grinding and flap disks,
  • Sander (optional)


  • Tarpaulin
  • 1 litre measuring cup,
  • Trowel
  • 2 x 10 litre buckets, mixing tray, container or bin for mixing concrete
  • Hand mixer
  • Power drill with paddle or manual mixer or cement mixer (optional)


  • Cutter,
  • Scissors,
  • Handsaw

Step 1 - Provision of Materials

There are a number of items that are needed to build this stove, which can either be bought from new or salvaged.

  • The drums are easy to obtain, apart from the 120 litre ones, which are rare... and it can cost 50€ (excluding taxes) to buy one of this size from new.
  • The stove pipes, which form the fire pit, are very easy to salvage and will be considerably more expensive if bought from new.

NB 1: the 2 pipes that are used for the (fixed) ash tray and the (removable) feed pipe must have a male fitting at one of their ends to accommodate the stopper. NB 2: A rigorous approach must be adopted when producing the exhaust system, using pipes which are compatible with one another. It is important to avoid leaks (condensates as well as smoke) and also the risk of fire .

  • Concrete can be made up of sand and fire cement but this will not be as durable as using chamotte concrete/fire cement. Chamotte consists of ground-up fire brick and must contain 25 to 40% alumina. To contact manufacturers of fire bricks, see list in the annex.Grain size of 0 to 10 mm grade is ideal, but 0 to 5 mm can also be used.

AVOID making concrete with ordinary cement or ‘black’ cement (unlike fire cement, it does not contain alumina)

  • Vermiculite: mixed with cement acts to insulate the bottom of the container. You can find this in builder's merchants and garden centres mostly under the names of “Vermex” or “Effiperl” (NB the latter also contains perlite and is a French brand)
  • Ceramic glass: this is specialist glass which does not expand when exposed to heat and is resistant to thermal shocks of up to 800°C ! You can buy it in the shops (for about €400 to €600 per m²) but you can also salvage it from old inserts, electric hobs, oven doors (inner glass only, otherwise it is likely to have little resistance to heat). Do not use ordinary glass ! To test salvaged glass, stand on a flat surface and put the glass onto a gas camping stove. If it resists the heat, then that is a good sign.

The final thing to do for the ‘crash test’ is pour a glass of cold water over it. If there is no reaction, then it is specialist glass. Do not put it on the grass in case it breaks.

In this image, you will find the average supply costs for the different models. Taking the drum and the smoke exhaust out of the equation, the pipework will be a major part of the budget.

Step 2 - How the Device is made up:

The idea behind the Poelito is to build a rocket stove inside a drum. The bottom of the drum is lined with an insulating mix of concrete; however the stove still needs to stand on a fire-proof support.The bottom part of the stove is cast in refractory concrete around a mould made of cardboard tubes. This is the area where the fire develops.Tubes are used to make the hollowed-out conduits: these are the routes which the smoke and fire take. The lower part forms the base of the fire pit and is a fixed body of material. The upper half is made up of removable metal pipes and is filled up with sand. This can either be left standing or transported separately. The fire pit can be closed to the outside either by a cast iron plate or by a pane of ceramic glass which can then be covered over by the drum lid as a finishing touch. The exhaust pipe is on the outside of the drum to which connection is made by a T joint with cap for cleaning out. Any pipes that go along the ceiling and to roof vents (or anything which goes outside of the dwelling) must be insulated.

In the picture, you can see the bottom of the vertical feed pipe and the ash tray at the front and, behind, the pipe where the fire is lit . This together forms the burner. Towards the back, there are 2 pipes where the smoke is forced down. These are situated on either side of the pipe where the fire lit. These pipes join up underneath by means of a manifold which directs the smoke towards the back in the direction of the smoke exhaust which forms the manifold. Connection to the exhaust pipe is by means of a T with cap.

Step 3 - Sizingː

It is possible to make the Poelito in three different sizes which will be depend on the type of dwelling, the space that is to be heated, the exterior temperature and how well the dwelling is insulatedː

  • PITO 60 made from a 60 litre drum (Ø35 cm H 65 cm): suitable for a truck or small caravan. Allow for 80kg

It is low power and low mass and is only suitable for small buildings with, at the very least, good insulation. As an example, in a large caravan (7m long), it is OK for temperatures down to 0°C but when the temperature drops to -5°C you cannot expect any more than 12°C in the morning if you lit a fire in the evening. Heavy use of an under-sized stove makes it less durable.The cooking area is fairly small and only allows use of small pans.

  • PITO 120 is made with a 120 litre drum (Ø45 cm H 75 cm) and is suitable for a yurt of up to 5m in diameter if well insulated. It is perfect for a large caravan or a mobile home. Allow for 160 kg

This is the best compromise in the terms of bulk v power and transportability. It also is suitable for a studio. It has a good cooking area with the possibility of a water heating option.

  • PITO 200 is made with a 200 litre drum (Ø60 cm H 90 cm) which can be used in a yurt which is larger than 5m in diameter, a small house, a small narrow-boat....allow for 250 kg.

This design is most suitable for lightweight dwellings with a floor-space of more than 20 m² or for a solidly-built, moderately insulated dwelling with a floor-space of more than 35 m² .A device which does not need to be moved very often and requires options such as water heating and heated seating would be suitable for this size of dwelling

Step 4 - Fundamental Health and Safety Rules

User’s responsibility

The authors of this guide and the organisation which makes it available disclaim all liability resulting from the use of the Poelito. You are solely responsible for the implementation of the proposed device. Take precautions, remain calm and composed when in action. Above all, question any so-called “good ideas” you may have (e.g. “that will be OK like that”...)

Safety during construction

Always use safety equipment required for the task undertaken. Metal can be a dangerous material to work with and cement may be toxic if inhaled. Ensure you have an suitable work plan and only use the right tools to assemble pieces when machining (clamp, vice, locking pliers)

Installing the stove

Like all stoves, it is important to respect safety rules in order to not put yourself or your dwelling at risk.

Weight /foundations:This device is of a substantial weight.In a lightweight dwelling, it is imperative that you put something under the floor to withstand the weight and avoid it collapsing. As a minimum, you will need at least a block which stands on the hard surface to sufficiently support the floor. If needed, insert a transverse beam between existing supports (to form a joist) and a block for maximum effect. In conjunction with this, a ground protection mat is recommended as the floor can be relatively flexible and can become distorted in places due to the weight being concentrated in a given area (at points of bearing heavy loads). This means laying any such material on the floor that is sufficiently rigid and of a size to distribute the weight over a larger area than that on which the device normally stands.

Ground Protection: Where appropriate, it needs to be placed on a thick metal plate which is large enough to distribute the weight. If installing the device on top of combustible material e.g. a plank of wood, the device must be lifted up to allow air flow underneath or placed onto an additional mass or thick insulation.

Spacing between walls:The stove must be placed 15 cm minimum away from all walls. If there is less than 45 cm between the stove and nearest wall, it must be protected with fireproof insulation such as rockwool. It must not under any circumstances be in contact with combustible material.

Conduits:The smoke exhaust pipe must comply with current standards. These are basic standards and prevent fire from breaking out in the dwelling. There must be a safe distance of 30cm between any wall made of combustible material and a single-skin pipe. A double-skin pipe is to be used for going up inside the roofing and for outside (with a safe distance of 10 cm for it to go through the roofing). A build-up of heat must be avoided at all costs: the 10 cm collar which goes around the pipe where it goes through the roof should not be left unfilled. It will need to be filled with fire-retardant insulation. The temperature could rise sufficiently to catch fire in an empty space (especially if it is closed off from the outside).

Chimney Height: The layout will have an effect on air circulation. Obstructions which cause air disturbances should be avoided. The smoke exhaust pipe, in particular, must 40cm higher than the top of the roof. For flat roofs, it must be higher than 120 cm (in this case, it must be properly secured). According to standards, the pipe must also be higher than any obstruction which is less than 8m away (e.g. trees)

Choosing a place to put the stove:Where you put the stove will be often dictated by the possible paths in which the smoke ducts in the roof can take. Clearly, you need to take into consideration the layout of the room. Avoid raising the device up too much as the room should be heated at ground level. If it is placed next to a wall, you should not only pay attention to safe distances but also to the accessibility needed for drawing air in to light the fire and for cleaning out.

Step 5 - Different types of Concrete: how to make them up and what goes in them.

As part of the process of making the Poelito, you will need to make up concrete. Fire cement is corrosive to the skin and an irritant to the eyes and respiratory tracts: handle using gloves, wear goggles and an anti-dust mask.

You need to make two different mixesː

  • An insulating mix used for the bottom of the drum and the heat riser;
  • And, for the remainder, a dense mix which used to store in the heat.

You can find details below on how to make it and what materials are needed. Reference to this will be made at different times during this tutorial.

How to make up the refractory concrete

  • 1 part water
  • 1 part fire cement
  • 1.3 parts vermiculite
  • Calculate the volumes needed for casting and increase it by 20 %
  • Put the water into the container in which you are going to mix it all up.
  • Pour in the cement.
  • Mix it up until you have a smooth paste
  • Pour all the vermiculite in and mix in until you have an even mixture. The granules should have all turned black and the mix should be sufficiently wet.
  • Add more water if necessary.

How to make up the dense refractory concrete

  • 1 part water
  • 1.3 fire cement
  • 3.3 parts refractory chamotte
  • Calculate the volumes needed for casting and increase it by 10 %
  • Put the chamotte into the container where you are going to make the mix.
  • Pour in the cement on top.
  • Mix them together dry.
  • Add ¾ of the volume of water needed
  • Mix
  • Gradually add more of the remaining water to adjust consistency

As with all binding agents which set hydraulically, losing moisture or drying out too quickly inhibits chemical reactions needed for it to set.

  • Cover whilst it is setting if the weather is hot, do not make mortar in direct sunlight or in freezing weather. It sets fairly quickly: in about ½ hour.
  • Only make up amounts that you can work with within this time-frame.
  • Avoid contact with rainwater which may be acidic and prevent the binding agent from working properly.
  • Avoid using warm water as it speeds up the setting process.

Step 6 - Preparing the drum


It is better to scour down the drum before starting construction.In all cases, this should be done before lighting the first fire as this will blister the paintwork which is not designed for resisting high temperatures. The simplest way to scour it down is by using abrasive discs on a grinding machine. It is also possible to use a sander or attach a wire brush to a drill.


Unless you have a drum with a detachable lid with strapping, you will need to cut the top off of the drum. The top of the drum is used as the cover for the stove once it has been finished. Avoid damaging it and choose the bottom of the drum (which is a complete unit) in preference to the top (which is where the bungs go). This means turning the drum upside down.

Using an angle-grinder and protective gear for hands, eyes and ears, cut just below the rim taking care to not cut the second layer of the metal sheet. That way, the lid can be replaced. A metal saw also works very well. Tip: Start with using an angle grinder (for easiness) and finish with the saw (for precision). Remember to protect the ground with tarpaulin as the remnants of liquid in the drum may leak out from the area you are cutting.


Now that the drum is opened up, it should be cleaned out as it will almost certainly still have remains of oil in it. Use sawdust or sand to get rid of the bulk of the residual oil content. Dispose of the contents as recommended (most likely as toxic waste, you will need to take to a waste disposal site)

Step 7 - Making the Ash Tray and Smoke Exhaust Holes

Two diametrically opposite holes must be drilled in the drum allowing you to insert the pipes.The front tube (100/130/150 mm in diameter) is to be used as an air inlet and for ash removal.The back tube (80/100/130 mm in diameter) is to be used to connect the smoke exhaust pipe (the respective diameters of PITO model - 60/120/200)

The two tubes should be 6 cm from the bottom of the drum. This is the thickness of the base layer of concrete. When measuring, you need to take into consideration the rim that protrudes beyond the bottom of the drum (If you are filling to 6 cm from the bottom of inside the drum, you then need to add on the thickness of this rim which will be approximately 1.5 cm)

  • Using string, go around the barrel, mark the point at which it meets on the string with a felt-tipped pen: this will give you the circumference of the barrel.
  • Fold the string in half and make a new mark half way between: i.e. half of the circumference.
  • Draw around the tubes which are to be inserted to mark where you need to make the holes.
  • Use string to locate the centres of the 2 apertures opposite each other.
  • Cut out the two circles staying well inside the lines.
  • Hammer the edge of the hole (towards the outside) in order to fit the tube.
  • Keep the cut-out circles to make the stoppers for the ash tray and feed.

Step 8 - Fitting the Ash Tubes and Smoke Exhaust

Ash tray side:

  • Feed the 100/130/150 tube through the hole you made earlier on the drum, male side on the outside with the ridge against the outer wall of the barrel.
  • Mark, on the tube from the inside, the point where it meets the wall of the barrel.
  • Take off the tube and cut 15 mm beyond the line.
  • Then cut out fins in this 15mm band stopping at the marked line using metal shears, a jigsaw or a grinder. These should be 1cm wide so that the they are easy to fold back.
  • When all these have been cut out, re-position the pipe and fold the fins back.
  • If necessary, put a few rivets or self-tapping screws to fix it securely.

Smoke Exhaust side:

On the smoke exhaust side, attach a short sleeve with a female fitting in the same way. The female fitting is on the outside.

Step 9 - Fitting the Moulds

There is a risk that the moulds (which are to be made next) will be displaced when pouring the concrete. They should be secured down to ensure the dimensions are correct.

  • Turn the barrel back over.
  • Drill 3 pairs of holes to the diameter of the wire (as per the diagram opposite). It does not have to be exact.
  • Loop 1m approx. of wire through. This will help to keep the cardboard moulds in place whilst pouring the concrete.

The wires need to point to the inside of drum.

Step 10 - Making the stopper for the ash tray

This stopper allows you to shut off the ash tray and regulate primary air intake.

  • Take one end of the tube which slots onto the (male) ash tray outlet .
  • Cut, adding 15 mm onto the length needed.
  • In this 15mm strip, cut out fins a centimetre apart trying to have an even number as this will look better.
  • Fold every second fin towards the inside.
  • Reuse the cut out circle from the drum to close down the lid.
  • Place the circle on the folded back fins
  • Fold the other fins over.
  • Add a handle and a small door to control air intake.

The system of controlling primary air (in the ash tray) should be rigorous and efficient.This allows you to control the power from combustion.

Step 11 - Casting the protective bottom

The bottom of the stove consists of 2 different layers: 3 cm insulating mix then 3cm dense mix. The purpose of this is to insulate the bottom of the barrel to protect the ground from heat.

  • Mark inside of the barrel the height where the two layers come up to, which is 3 and 6 cm.
  • Ensure that the drum is on a level surface when the concrete is poured.

Insulating Mix:

  • Calculate the volume needed for the insulating
  • Make up the mix referring to the instructions on how to make up the insulating mix and what goes in it Step X.
  • Pour the insulating mix up to the 3cm mark.
  • As you are doing this, pack down the mix using a tamper .
  • Ensure the wires which hold in the moulds are sticking out.
  • Wait two hours until the first layer is surface-dry so that you can then pour on the dense mix.

Tip: Once the mixture has started to set, scarify the surface of the concrete in order that the second layer sticks to it well.

Dense Mix:

  • Calculate the volume needed for the dense mix
  • Make up the mix referring to the instructions on how to make up the dense mix and what goes in it in Step X.
  • Pour in the 3cm of the dense mix up to the 6cm mark.
  • As you are doing this, pack down the mix using a tamper .
  • Ensure the wires which hold in the moulds are sticking out.
  • Wait 24 hours before pouring the remainder.

Step 12 - Making the Moulds

You will need to make the moulds so that you can pour the refractory concrete. This is effectively making the conduits where heat and gases circulate. For this, you will need to make moulds for the different conduits using cardboard which then need be taken out after the concrete has been cast. They need to be made solid enough to withstand the pressure of the concrete but equally be easy as possible to take out once it has all dried.

The minimum thickness for the concrete must be 3 cm between the various components themselves and between the components and the barrel. There is a risk that the concrete might crack underneath making the stove not very durable. There is also a danger of the smoke circulating poorly which means the stove will not work very effectively. That needs to be borne in mind when making the moulds, especially when they are positioned in the concrete when casting the mix .


  • As the pipes are effectively cylinders, you need to make an opening so that they can be joined. When cutting out the cardboard tubes, add a few cms to the sides (côtes) listed in the tables e.g. to join a 100mm tube onto a 100mm one, the depth of the opening is 5cm. For thick carton, cut it with a saw (a good way of doing this is with a jigsaw) and a cutter.
  • Use the dimensions in the tables as shown.


  • Wrap the tubes individually in protective plastic.
  • Position the tubes relative to one another as depicted in the diagrams.
  • Hold the tubes in place with gaffer tape.

Be careful to ensure the junctions are well covered so that the concrete does not soak into the tubes.

TIP: For connection with the ash tray or smoke exhaust, narrow the gaps with another bit of rigid cardboard. Remove a strip in order to reduce the diameter so that you can slot it into the cardboard mould. TIP: Allow for a 2 cm margin in height so that you have something to get hold of when taking out the castings. TIP: Once the manifold and the horizontal tube where the fire is lit has been completed (these are the hardest to remove), it is possible to cut them longitudinally into 2 or 3 pieces and put them back together. This will make it easier to remove.

Step 13 - Positioning the Moulds.

Once the cardboard castings have been finished and encased, they need to be placed in the barrel and fastened.

  • Slot the cardboard tube into the metal opening of drum.
  • Fasten tightly with 2 strands of wire .
  • Cut off any redundant wire.

Do the same with the ash tray mould.

  • Hold onto the wires and pass them over top the pipe which comes horizontally out of where you light the fire .
  • Wedge the different pieces between each other with bits of wood. This will help to maintain the gaps between the pieces whilst the dense concrete is being poured.

Step 14 - Pouring the Refractory Concrete

  • Mark either with a pen or with tape inside the drum, the height from the bottom layer of concrete to which the dense concrete needs to be poured (350/300/260)
  • Prepare the mix referring to how to make concretes up and what goes in them in Stage X.
  • Pour the concrete in 5 cm max. passes.
  • Pack the concrete down after each pass in a consistent manner. If the concrete is packed down too much on one side, the cardboard mould will not stay in.
  • Make sure the thicknesses are uniform and symmetrical as to not allow any movement in the moulds.
  • If necessary, re-position the wedges as you are pouring the concrete.
  • Repeat until you have reached the specified height.

Step 15 - Removing the Moulds

Removing the moulds can be done 12 hours after pouring the concrete. This can be quite a tedious task.

  • Use gloves to avoid damage to hands from the concrete when poking them into the holes.
  • Pull out all that you are able to retrieve from the orifices either by hand or with a pair of pliers.
  • Once you have taken out as much as you can, light a fire in the hole to burn off and get rid of that which is left inside.
  • Use methylated spirits to facilitate the process of burning the bits you want to get out . However, care must be taken to never put alcohol onto the fire. When the fire gets going, use little pieces of dry wood to keep the fire burning.

Step 16 - How to Make the Wood Feed Pipe.

The length of the wood feed must be adjusted so that its upper end goes through the lid and you can fit a stopper onto it. However, it must be as short as possible as the draught effect produced when lit works against the outlet line. The shorter it is, the easier it is to light.

  • Take the length between the level of the concrete and the top of the barrel, add 15mm for the fins and whatever the height of the stopper is. The top of the tube has to have a male fitting in so you can fit a stopper onto it.
  • Cut out the tube.
  • Make 15mm high fins every centimetre on the lower part.
  • Fold back every other fin towards the outside.

Step 17 - How to make the Wood Feed Stopper

It is the same process for the feed pipe as it would be for the ash tray but without adding the air inlet.

  • Take one end of the tube which fits onto the (male) outlet feed pipe
  • Cut, adding 15 mm onto the length needed.
  • In this 15mm strip, cut out fins a centimetre apart trying to have an even number as this will look better.
  • Fold every second fin towards the inside.
  • Reuse the cut-out circle from the drum to close down the lid.
  • Place the circle on the folded back fins
  • Fold over the other fins on top.
  • Add a handle.

To adjust the secondary air flow, all you need is to put the lid half-on. The lid will never be totally closed down during use. At the end of use, the lid is to be closed. This stops the hot stove from sucking in air into the unit, warming it up and escaping out.

Step 18 - Making the Grate

he system works even better with a grate fitted to the fire pit and with primary air coming in underneath (onto the ashtray). This allows the embers to keep reducing down as you refuel.

ut the drain grate into a tongue shape so that it can be positioned mid-way up the height of the ash tray, It needs to go just at the back of the fire pit to stop the embers from falling out.

Step 19 - How to Make the Heat Riser.

To make this tube out of concrete, you need to make a mould using 2 cardboard tubes, one inside the other. The diameter of the inside tube should match the mould (100/100/80). The diameter of the outside tube must be approximately 6cm larger than the inside one in for the thickness of the tube to be 3cm. This will need to be 2 to 3cm shorter than the bell chamber in order to leave a space under the glass so that the smoke can circulate.

  • Cut the outside cardboard tube.
  • Cover the inside surface in plastic.
  • Cut the inside cardboard tube.
  • Cover the outside surface in plastic.
  • Cut out two rings from cardboard. These will be used as spacers between the inside and the outside tubes.
  • Cover them in plastic.
  • Put the spacers at the bottom to close up the mould.
  • Fill with the insulating mix (fire cement and vermiculite) a bit at a time.
  • Spread the mix out and pack down tightly with a small tamper.

TIP:If you don’t have any cardboard tubes of the right diameter, you can make them by rolling up cardboard. Roll it up with the flutes going vertically.

ALTERNATIVE : For the PITO60, it is possible to make a mould made out of the insulating mix or, alternatively, cut out a tube from thick metal, for example a fire extinguisher (not if made of aluminium) since the gap is very narrow.

Step 20 - Making the Bell Chamber

Step 21 - Découpe de la vitre

La vitre doit recouvrir toute la cloche. Avant de la faire découper, vérifiez les cotes sur votre poelito, il est important de s’assurer que le patron soit de la bonne taille.

Ce doit être un verre vitrocéramique, qui résiste aux hautes températures. Voir Etape n°1 - Approvisionnement matériel

Si vous l’achetez dans un magasin de bricolage (400 – 700 €/m²) faites la découper sur place.


Step 22 - Découpe du couvercle

Le couvercle ferme le haut du poelito, il n’a pas de rôle particulier dans le système.

  • Tracer sur le dessous du couvercle le conduit d'alimentation ainsi que la cloche.
  • Découper à la scie sauteuse
  • Positionner sur le poêle

Step 23 - Peinture

La construction du poêle est terminée, avant de l’installer dans son futur habitat, il mérite un coup de peinture.

  • Utiliser des peintures spéciales pour poêles qui résistent aux hautes températures.

Step 24 - Installation

La construction du Poelito est terminée! il est l'heure de le sortir de l'atelier pour lui trouver une place à long terme pour en profiter durant les longues soirées d'hiver.

Attention à bien respecter les règles de sécurité rappelée dans l'Etape n°4

Step 25 - Remplissage de sable

Une fois l’appareil installé au bon endroit, sur un socle approprié, avec son tuyau installé, il faut commencer par mettre en place la cloche et le conduit d’alimentation.

  • Poser le conduit d’alimentation en bois et la cloche à blanc (sans mortier ni joint) et ajuster les écartements.
  • Poser le couvercle par-dessus pour vérifier aussi les alignements.
  • Utiliser les ailettes pour ajuster (replie- les pour redresser un conduit un peu penché).
  • Lorsque tout est en place, déposer sur la jonction ailettes/maçonnerie des petits paquets de mortier d’argile, en les répartissant progressivement tout autour jusqu’à tout recouvrir. Il s’agit d’éviter que le sable ne fuit par les espaces entre les ailettes.

Mortier d'argile : terre argileuse (qui colle) et du sable en proportions variables. Généralement 1 argile pour 3 à 5 sable, avec ce qu’il faut d’eau pour en faire des boules qui se tienne et qui collent. Si pour un enduit ou de la maçonnerie il vaut mieux s’assurer d’avoir les proportions idéales, ici ça n’a aucune importance.

Step 26 - Pose de la vitre

Poser la vitre sur la cloche sans joint.

  • Faire quelques feux pendant lesquels le sable va se tasser.
  • Ajouter du sable quand c’est nécessaire.
  • Mettre du sable de niveau jusqu'au haut de la cloche
  • Poser par-dessus de la tresse minérale pour porte de poêle (disponible en magasin de matériaux)
  • Replacer la vitre.
  • Replacer le couvercle, la mise en place est terminée.
  • Profiter du poêle jusqu’au printemps !

Step 27 - Notice d'utilisation

Préparation du combustible

Il faut du bois très sec sans quoi le poêle chauffera mal et s’encrassera. Il faut 2 types de combustibles :

  • le bois de préchauffage : très fin et court, de l’ordre de 10 à 20 cm de long pour un diamètre maximum de 4 à 5 cm, idéalement du résineux qui est plus facile à allumer.
  • le bois de chauffe : de longueur variable (de 30 cm jusqu’à la hauteur sous plafond) plutôt bien droit et assez fin. *

Si les 10 à 15 cm de section du conduit d’alimentation (selon le modèle) sont remplis avec une seule grosse bûche ça ne brûlera pas bien du tout ! Il faut des diamètres variés et complémentaires afin de bien remplir le conduit. Le bois tordu empêche un bon remplissage, il faut donc s’arranger pour recouper les branches là où elles sont tordues, quitte à avoir des longueurs différentes. Sinon toute essence fera l’affaire, à condition que le bois soit bien sec.  

Chargement de la flambée de préchauffage

Placer dans le conduit d’alimentation, depuis l’ouverture supérieure, dans cet ordre-là :

  • une poignée d’allume feu bien aéré (carton ou papier déchiqueté, copeaux grossier ...)
  • une poignée de cagette bien brisée,
  • Une poignée de petit bois de préchauffage fendu très fin (idéalement du résineux),
  • une poignée de bois de préchauffage de diamètre plus important (4 à 5 cm maxi)
  • Vérifier que le départ horizontal vers la zone de flamme n’est pas obstrué par le bois.
  • Vérifier le niveau de cendres et vider s’il y en a trop avant de passer à l’allumage.

Amorçage du tirage et allumage

Placer un peu de cendre ou de sable dans le bouchon du T au pied de la ligne d’évacuation (seulement la 1ère fois)

  • verser 5cl d’alcool à brûler dessus.
  • Allumer et replacer rapidement le bouchon.
  • Allumer le feu au niveau du cendrier
  • replacer les 2 couvercles (dessus de l’alimentation et cendrier) en position entrouverte. Le tirage produit par la combustion de l’alcool assure un allumage rapide et idéal à chaque fois.
  • Si de la fumée s’échappe par le haut, refermer totalement le couvercle d’alimentation et réduire l’ouverture du cendrier. 

==== Chargement ====  Dès que la charge de préchauffage est bien allumée, ajouter par-dessus, sans tasser, suffisamment de bois pour remplir l’intégralité de la section d’alimentation. C’est une condition importante pour que le bois brûle correctement : la combustion est meilleure si tu remplis toute la section. Le feu se développe d'avantage dans la zone de flamme, et moins dans le conduit d'alimentation. 

Attention à ne pas trop serrer le bois qui doit pouvoir descendre naturellement au fur et à mesure qu’il brûle.

Gestion du feu et rechargement

Vérifier de temps en temps que le bois brûle seulement en partie inférieure et ne se bloque pas. Secoue ton bois pour l’aider à descendre au besoin.  Réglage du tirage : il faut conserver une petite ouverture sur le cendrier pour éviter l’accumulation de braises. Si cette ouverture est trop grande le feu peut s’emballer jusqu’à remonter et fumer par en haut. L’essentiel de l’air doit arriver par le haut du conduit d’alimentation : la réduire de moitié au maximum mais jamais d’avantage ! 

Si la vitre noircit 3 possibilités : le bois n’est pas sec, le régime de combustion est trop intense (trop d’air au cendrier), l’arrivée d’air par en haut est trop faible.

<u>ATTENTION : </u> Pendant la flambée, l’appareil demande peu de surveillance et d’entretien. Mais avec du bois très long la combustion peut remonter le conduit d’alimentation et s’emballer, surtout avec du résineux (palette). Si c’est le cas, vaporiser un peu d’eau dans le conduit d’alimentation pour le refroidir.

Step 28 - Entretien

Entretien courant

Le seul entretient à effectuer régulièrement est le vidage des cendres. Si le niveau de cendres est trop important une accumulation de braises va se produire, jusqu’à boucher le départ latéral vers la zone de flammes : c’est l’arrêt d’urgence assuré, après un bon enfumage !

Entretient annuel La loi oblige tout utilisateur de poêle à bois à ramoner le conduit d’évacuation des fumées 2 fois par an dont une fois en période de chauffe. Pour ramoner le conduit glisse un hérisson nylon de diamètre approprié par le tampon de ramonage. Va jusqu’en haut puis redescend. Si tu fais ça dans un poêle encore chaud le tirage va inciter les poussières à sortir par en haut plutôt qu’à sortir vers l’habitat. Il est aussi important de vider le dépôt de cendres qui va se produire en pied de circuit de flamme et surtout au fond du collecteur de fumées. C'est l’endroit préféré des cendres volantes pour se déposer, d'où l'utilité des trappes de ramonage en face du collecteur.

Notes and references

Retrouvez tout et même plus encore sur le site de l'association des2mains :



plein d'autres informations sur l'usage du poelito et d'autres solutions sur le site de David :