Difference between revisions of "L'éolienne/en-gb"

 
(90 intermediate revisions by the same user not shown)
Line 84: Line 84:
  
  
<u>Electric circuit</u>
+
<u>Electric circuit :</u>
  
 
3- Stepper motor from a printer
 
3- Stepper motor from a printer
Line 112: Line 112:
 
|Tools=<u>Wind turbine</u>
 
|Tools=<u>Wind turbine</u>
  
a - a vise
+
a - A vise
  
 
b - a saw for metal and wood
 
b - a saw for metal and wood
Line 134: Line 134:
 
{{Tuto Step
 
{{Tuto Step
 
|Step_Title=How it Works
 
|Step_Title=How it Works
|Step_Content="This tutorial shows how to build a small wind turbine from old stepper motor
+
|Step_Content='''This tutorial shows how to build a small wind turbine from old stepper motor
  from an old printer or photocopier. It is able to e.g. charge a mobile phone."
+
  from an old printer or photocopier. It is able to e.g. charge a mobile phone.'''
  
  
<u>1 - Rotation of the rotor blades</u>
+
<u>1 - Rotation of the blades</u>
  
 
Powered by the wind, the propeller, also called rotor, starts to move.
 
Powered by the wind, the propeller, also called rotor, starts to move.
The propeller blades rotate.
+
The blades rotate.
  
 
The rotor has 4 blades and is mounted on a mast in order to get more wind.  
 
The rotor has 4 blades and is mounted on a mast in order to get more wind.  
  
  
<u>2 - Production of electricity</u>
+
'''2 - Production of electricity'''
  
 
The rotor propels a stepper motor.
 
The rotor propels a stepper motor.
Line 154: Line 154:
  
  
<u>3 - Electric circuit</u>
+
'''3 - Electric circuit'''
  
 
The circuit "handles" the alternating current from the motor output,
 
The circuit "handles" the alternating current from the motor output,
Line 161: Line 161:
  
  
<u>It consists of:</u>
+
It consists of:  
  
 
-The rectifiers, which "rectify" the tension from the motor output
 
-The rectifiers, which "rectify" the tension from the motor output
Line 178: Line 178:
 
{{Tuto Step
 
{{Tuto Step
 
|Step_Title=Steps Involved in Making the System
 
|Step_Title=Steps Involved in Making the System
|Step_Content=<u>Wind turbine</u>
+
|Step_Content='''Wind turbine'''
  
 
1 - Preparing the motor
 
1 - Preparing the motor
Line 191: Line 191:
  
  
<u>Electric circuit</u>
+
'''Electric circuit'''
  
 
1 - Rectifiers
 
1 - Rectifiers
Line 201: Line 201:
 
4 - Connecting the USB port
 
4 - Connecting the USB port
  
motor protection
+
Motor protection
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
 
|Step_Title=L'éolienne - Le moteur
 
|Step_Title=L'éolienne - Le moteur
|Step_Content=Choosing the motor
+
|Step_Content='''Choosing the motor'''
  
De manière générale, plus le moteur a de pas (steps en anglais), moins la vitesse de rotation sera élevée à tension constante. Les caractéristiques techniques importantes dans le choix du moteur sont :
+
In general, the more steps the motor has, the lower the speed at constant voltage. Important technical data for the selection of the motor are :
- La tension maximale ou nominale (mesurée en volts) : Vmax
+
- The maximum or nominal voltage (measured in volts): Vmax
- Le courant par phase (mesuré en ampères / phase) : A/ph
+
- The current per phase (measured in amperes / phase): A/ph
- Le nombre de pas ou l'angle de pas (mesuré en °)
+
- Number of steps or step angle (measured in °)
  
Par exemple, un moteur pas-à-pas dont l'angle est de 3.6° aura 360/3.6 = 100 pas, un moteur à 1.8° aura 360/1.8 : 200 pas... Si vous deviez choisir entre deux moteurs aux caractéristiques (Vmax et A/ph) identiques, préférez le moteur avec le plus grand nombre de pas (ici le moteur à 1.8° puisqu'il a 200 pas), il nécessitera une vitesse de rotation moins importante pour délivrer une tension satisfaisante.
+
For example, a stepper motor with an angle of 3.6° will have 360/3.6 = 100 steps, a 1.8° motor will have 360/1.8 : 200 steps . If you had to choose between two motors with identical characteristics (Vmax and A/ph), prefer the motor with the highest number of steps (here the 1.8° motor since it has 200 steps), it will require a lower rotation speed to deliver a satisfactory voltage.
  
Le choix du moteur sera aussi conditionné par la tension maximale (Vmax). Un moteur caractérisé à 3V délivrera une puissance nettement inférieure à un moteur caractérisé à 50V à vitesse de rotation égale. Choisissez votre moteur (dans la limite du choix disponible) en fonction de l'application souhaitée et de la puissance demandée.
+
The choice of motor will also be conditioned by the maximum voltage (Vmax). A motor characterized at 3V will deliver a much lower power than a motor characterized at 50V at the same rotation speed. Choose your motor (within the limit of the available choice) according to the desired application and the required power.
  
  
1 - Couper les 6 fils sortant du moteur pas à pas, les dénuder et les torsader.
+
1 - Cut the 6 wires coming out of the stepper motor, strip and twist them.
  
A partir de la deux méthodes possibles :
+
From the two possible methods:
  
'''Méthode #1'''
+
'''Method #1'''
  
Afin de savoir lesquels des 6 fils a
+
In order to find out which of the 6 wires has the highest output voltage, all possible motor output torques must be tested and the two highest selected.
la tension de sortie la plus haute, il faut tester tous les couples possibles
 
de sortie du moteur, et sélectionner
 
les deux plus élevés.
 
  
2 - A l’aide d’une visseuse, d’un voltmètre réglé sur « alternatif » et de pinces
+
2 - Using a screwdriver, a voltmeter set to " AC " and alligator clips, test the pairs of wires. Note the tension for each pair. ''(picture 1)''
crocodiles, tester les couples de fils.  
 
Noter la tension pour chacun des couples. ''(image 1)''
 
  
3 - Sélectionner les deux couples de fil ayant la tension de sortie la plus élevée (ici 10V, cela peut varier en fonction
+
3 - Select the two wire pairs with the highest output voltage (here 10V, this may vary depending on the motor). These will then be connected to the electrical circuit of the wind turbine.
du moteur). Ce sont eux qui seront ensuite connectés au circuit électrique de l’éolienne.
 
  
''* Astuce : Marquer d’un scotch de couleur les deux couples retenus pour ne plus les mélanger aux autres.''
+
''* Tip: Mark with colored tape the two selected couples so they don't get mixed up with each other.''
  
'''Méthode #2'''
+
'''Method #2'''
  
En fait les moteurs pas-à-pas (stepper en anglais) sont constitués schématiquement de deux ou quatre bobines :
+
In fact, stepper motors are schematically made up of two or four coils:
  
  (image 2)
+
  (picture 2)
  
Comme décrit dans l'image, dans le cas d'un 6 fils on ne va pas utiliser le point milieu. On va en fait cumuler deux bobines pour n'en faire qu'une et générer plus de tension.  
+
As described in the picture, in the case of a 6-wire we will not use the mid-point. In fact, we will accumulate two coils to make one and generate more tension.  
  
A partir de la c'est finalement très simple :  
+
From this point, it's very simple:  
  
1) Il suffit de placer son multimètre en mode ohmètre, ou encore mieux en mode détection de contact (vous savez quand il fait "BBIIIIPPPPP !!" quand les deux sondes se touchent ;) ).  
+
1) Just put your multimeter in ohm meter mode, or even better in contact detection mode (you know when it does "BBIIIIPPPPP !!" when the two probes are touching ).  
  
2) Il s'agit tout d'abord de séparer les deux jeux de fil pour chacune des bobines.  
+
2) The first step is to separate the two sets of wire for each coil.  
  
Pour un 4 fils du coup c'est très simple : vous prenez un fil sur une sonde, et avec l'autre sonde vous touchez les autres fils. Quand il y en a qui fait "BBBIIIIIPPPPP !!!" ou que la résistance mesurée devient faible (tout dépend du moteur mais une fourchette large serait 1 à 50 ohms) vous êtes bon vous avez trouvé votre bobine et par élimination les deux fils qui restent sont pour l'autre bobine.  
+
For a 4-wire system, it's very simple: you take one wire on one probe, and with the other probe you touch the other wires. When there is one that goes "BBBIIIIIPPPPP!!" or the measured resistance becomes low (it depends on the motor but a wide range would be 1 to 50 ohms) you are good you have found your coil and by elimination the two remaining wires are for the other coil.  
  
Pour un 6 fils c'est à peine plus complexe : on applique la même méthode pour déterminer les jeux de 3 fils par bobine. Ensuite on passe en mode ohmètre et cherche quelle paire de fils par bobine donne la pllus grande résistance ==> bingo vous avez trouvé les bons fils pour une bobine, répétez l'opération pour l'autre et vous êtes bons ;)
+
For a 6 wire it is hardly more complex: we apply the same method to determine the sets of 3 wires per spool. Then we switch to ohmeter mode and look for which pair of wires per coil gives the highest pllus resistance ==> bingo you have found the right wires for one coil, repeat the operation for the other and you are good.
  
Note : il existe aussi des 8 fils. En fait c'est un 6 fils (donc 4 bobines) mais avec 4 bobines indépendantes (comme un 4 fils donc ...). Utilisez alors la méthode du 4 fils mais plus de fois ;)
+
Note: there are also 8 wires. In fact it is a 6-wire (so 4 coils) but with 4 independent coils (like a 4-wire so ...). So use the 4-wire method but more times.
 
|Step_Picture_00=L_olienne_1_-_Tester_les_couples_de_fils.jpg
 
|Step_Picture_00=L_olienne_1_-_Tester_les_couples_de_fils.jpg
 
|Step_Picture_01=Mini__olienne_30W_4ou6fils-e49e5.jpg
 
|Step_Picture_01=Mini__olienne_30W_4ou6fils-e49e5.jpg
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=L'éolienne - Axe du moteur
+
|Step_Title=The Wind Turbine - Motor Axis
|Step_Content=1 - Découper une plaque métallique
+
|Step_Content=1 - Cutting a metal plate of 80x30 cm. Drill it with 5 holes of diameter 4mm.  
de 80x30 cm. La percer de 5 trous de diamètre 4.  
 
  
''* Astuce : Vous pouvez vous aider
+
''* Tip: You can use figure 1 above to cut and drill the plate.''
du schéma 1 ci-dessus pour découper et percer la plaque.''
 
  
2 - Souder la plaque de métal au niveau de son trou central à l’axe du moteur.
+
2 - Weld the motor shaft to the central hole of the metal plate'' (picture 2)''.
''(image 2)''
 
 
|Step_Picture_00=L_olienne_Support_moteur.jpg
 
|Step_Picture_00=L_olienne_Support_moteur.jpg
 
|Step_Picture_01=L_olienne_2_-_Souder_pales_plaque_me_tal.png
 
|Step_Picture_01=L_olienne_2_-_Souder_pales_plaque_me_tal.png
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=L'éolienne – Préparation des pales
+
|Step_Title=The Wind Turbine - Blade Preparation
|Step_Content=A partir de la formule reliant la vitesse du vent, une surface donnée et la puissance du vent sur cette surface :
+
|Step_Content=From the formula linking the wind speed, a given surface and the power of the wind on this surface :
  
 
[[Fichier:L olienne - quipe des l phants - Hack le Lab Formule puissance vent.gif|100px]]
 
[[Fichier:L olienne - quipe des l phants - Hack le Lab Formule puissance vent.gif|100px]]
  
On peut établir cette formule, permettant de calculer la longueur des pales de l'éolienne :  
+
This formula can be used to calculate the length of the blades of the wind turbine:  
  
 
[[Fichier:L olienne - quipe des l phants - Hack le Lab Relation longueur pale - vitesse vent.gif|200px]]
 
[[Fichier:L olienne - quipe des l phants - Hack le Lab Relation longueur pale - vitesse vent.gif|200px]]
  
:  
+
Where:  
* L = longueur de la pale en m
+
* L = blade length in m
* P = puissance caractéristique du moteur en W
+
* P = characteristic power of the motor in W
* V = vitesse du vent en m/s (en fonction de la localisation)
+
* V = wind speed in m/s (depending on location)
  
Dans les conditions courantes, la Longueur de la pale doit être de 35 cm.
+
Under normal conditions, the length of the blade should be 35 cm.
  
1 - Dessiner et découper les pales dans un tube PVC. ''(image 3)''
+
1 - Draw and cut the blades in a PVC tube. (picture 3)''.
  
''* Astuce : Vous pouvez vous aider
+
''* Tip: You can help yourself from the diagram 2 above to draw the shape of the blades.''
du schéma 2 ci-dessus pour dessiner
 
la forme des pales.''
 
  
Le schéma 3 indique le sens de la découpe.
+
Figure 3 shows the cutting direction.
  
2 - Poncer les bords de chacune des pales : le bord d’attaque doit être arrondi, et le bord de fuite aiguisé.
+
2 - Sand the edges of each of the blades: the leading edge must be rounded, and the trailing edge sharpened.
  
3 - Percer les pales : le perçage
+
3 - Drill the blades: the drilling is carried out as close as possible to the trailing edge so that the latter can be fixed flat on the plate that carries the blades.'' (image 4)''
s’effectue au plus proche du bord
 
de fuite afin que ce dernier puisse être
 
fixé à plat sur la plaque qui porte
 
les pales.'' (image 4)''
 
  
Vos pales sont prêtes !
+
Your blades are ready!
 
|Step_Picture_00=L_olienne_3_-_De_couper_pales.png
 
|Step_Picture_00=L_olienne_3_-_De_couper_pales.png
 
|Step_Picture_01=L_olienne_Eolienne_-_De_coupe_pa_les.jpg
 
|Step_Picture_01=L_olienne_Eolienne_-_De_coupe_pa_les.jpg
Line 312: Line 297:
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=L'éolienne - Aileron et base des pales
+
|Step_Title=The Wind Turbine - Fins and Blade Bases
|Step_Content=1 - Dans une planche de bois, dessiner
+
|Step_Content=1 - In a wooden board, draw and cut out the fin. ''(image 5)''
et découper l’aileron. ''(image 5)''
 
  
''* Astuce : Vous pouvez vous aider du
+
''* Tip: You can use figure 3 above to draw the shape of the fin.''
schéma 3 ci-dessus pour dessiner
 
la forme de l’aileron.''
 
  
2 - Dans cette même planche découper un carré de la taille de votre moteur
+
2 - In the same board, cut out a square the size of your engine (here 80x80cm) which will be used to accommodate the blades previously cut out in order to join them together. ''(diagram 3 - base of the blades)''.
(ici 80x80cm) qui servira à accueillir
 
les pales précédemment découpées
 
afin de les solidariser entre elles.
 
''(schéma 3 - base des pales)''
 
  
3 - Sur l’aileron, marquer l’emplacement du moteur de façon à ce qu’il puisse s’encastrer de force dans la forme.
+
3 - On the aileron, mark the location of the motor so that it can be forced into the shape. ''(diagram 3 - motor)''
''(schéma 3 - moteur)''
 
  
''* Remarque : Les dimensions de cette
+
''* Note: The dimensions of this part depend on the size of your motor.''
partie dépendent de la taille de votre moteur.''
 
  
4 - Poncer les rebords de l’aileron pour un meilleur aérodynamisme et un
+
4 - Sand the edges of the aileron for better aerodynamics and better rendering. ''(frame 5)''
meilleur rendu. ''(image 5)''
 
 
|Step_Picture_00=L_olienne_5_-_Aileron.jpg
 
|Step_Picture_00=L_olienne_5_-_Aileron.jpg
 
|Step_Picture_01=L_olienne_De_coupe_aileron.jpg
 
|Step_Picture_01=L_olienne_De_coupe_aileron.jpg
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=L'éolienne - Assemblage
+
|Step_Title=The Wind Turbine - Assembly
|Step_Content=1 - Visser les pales (découpées
+
|Step_Content=1 - Screw the blades (cut out in step 3) to their base (cut out in step 4).
à l’étape 3) sur leur base (découpée
 
à l’étape 4).
 
  
2 - Visser la base des pales sur la plaque en métal. Utiliser les trous percés dans la plaque métallique à l’étape 2. ''(image 6)''
+
2 - Screw the base of the blades to the metal plate. Use the holes drilled in the metal plate in step 2. (image 6)''.
  
3 - Vérifier qu’il y ait le même angle entre chacune des pales.
+
3 - Check that there is the same angle between each of the blades.
 
|Step_Picture_00=L_olienne_6_-_Assemblage.jpg
 
|Step_Picture_00=L_olienne_6_-_Assemblage.jpg
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Le circuit électrique - Redresseurs
+
|Step_Title=The electrical circuit - Rectifiers
|Step_Content=Le circuit électrique est celui du ''schéma 4''.  
+
|Step_Content=The electrical circuit is as shown in "Figure 4".  
  
En sortie du moteur, on obtient du courant alternatif. Or, pour charger une batterie ou allumer une lampe, il est nécessaire d’avoir du courant continu. Pour transformer du courant alternatif en courant continu on utilise deux redresseurs : ils « redressent » la tension à
+
At the output of the engine, we get alternating current (AC). However, to charge a battery or light a lamp, it is necessary to have direct current (DC). Two rectifiers are used to transform alternating current into direct current: they "rectify" the voltage at the output of the motor.
la sortie du moteur.
 
  
Chaque redresseur dispose de 4 pattes :
+
Each rectifier has 4 legs:
Les deux pattes centrales sont les pôles alternatifs du condensateur
+
The two central legs are the alternating poles of the capacitor.
Les deux pattes extérieurs sont les pôles positifs et négatifs du condensateur
+
The two outer legs are the positive and negative poles of the capacitor.
  
''* Astuce : sur la tête du redresseur
+
''* Tip: on the rectifier head each of these 4 poles are marked ''
chacun de ces 4 pôles sont indiqués.''
 
  
1 - Souder les sorties tension du moteur pas à pas (précédemment sélectionnées) aux entrées alternatives de chaque redresseur : le premier couple avec les pôles alternatifs du premier redresseur, et le deuxième couple avec les pôles alternatifs du deuxième redresseur.
+
1 - Solder the stepper motor voltage outputs (previously selected) to the alternating inputs of each rectifier: the first torque with the alternating poles of the first rectifier, and the second torque with the alternating poles of the second rectifier.''(image 7)''.
''(image 7)''
 
  
''* Astuce : Il est possible d’utiliser de la gaine thermorétractable pour couvrir les connections afin de protéger le système.''
+
''* Tip: It is possible to use heat shrink tubing to cover the connections to protect the system.''
  
2 – Souder les sorties négatives des
+
2 - Solder the negative outputs of the two rectifiers together, then solder the positive outputs of the two rectifiers together. "(picture 8)''.
deux redresseurs entre elles, puis souder les sorties positives des deux redresseurs entre elles. ''(image 8)''
 
 
|Step_Picture_00=L'éolienne_Sch_ma_lec_olienne_Dakar.png
 
|Step_Picture_00=L'éolienne_Sch_ma_lec_olienne_Dakar.png
 
|Step_Picture_01=L_olienne_Circuit_e_lec_moteur_pas_a_pas.jpg
 
|Step_Picture_01=L_olienne_Circuit_e_lec_moteur_pas_a_pas.jpg
Line 377: Line 346:
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Le circuit électrique – Condensateur
+
|Step_Title=The electrical circuit - Capacitor
|Step_Content=L’énergie fournie par l’éolienne n’est pas constante car la vitesse du vent varie
+
|Step_Content=The energy supplied by the wind turbine is not constant because the wind speed is constantly changing. The overload must therefore be temporarily stored in order to
en permanence. Il faut donc stocker
+
to be able to redistribute it consistently. A capacitor is used for this purpose.  
provisoirement la surcharge afin de
 
pouvoir la redistribuer de façon constante. On utilise pour cela
 
un condensateur.  
 
  
Le condensateur est un composant polarisé :  
+
The capacitor is a polarized component:  
- la borne positive est la tige la plus longue
+
- the positive terminal is the longest leg
- la borne négative est la tige la plus courte
+
- the negative terminal is the shortest leg
  
''* Astuce : Il est également possible  
+
''* Tip: It is also possible to refer to the "-" symbol written on the minus pole.''
de se référer au symbole “-” inscrit sur
 
la borne moins.''
 
  
1 - Souder les pôles négatifs entre eux puis les pôles positifs entre eux en sortie de redresseur. ''(image 9)''
+
1 - Solder the negative poles together and then the positive poles together at the rectifier output. (image 9)''.
  
''* Astuce : si les tiges de vos différents
+
''* Tip: If the legs of your components are too short to weld together, you can connect them with electrical wires.''
composants sont trop courtes pour
 
se souder entre elles, vous pouvez les relier à l’aide de fils électriques.''
 
 
|Step_Picture_00=L_olienne_9_-_Redresseur_de_tension_a_condensateur.jpg
 
|Step_Picture_00=L_olienne_9_-_Redresseur_de_tension_a_condensateur.jpg
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Le circuit électrique – Régulateur de tension ou rehausseur de tension
+
|Step_Title=The electrical circuit - Voltage regulator or voltage booster
|Step_Content=Le régulateur de tension permet
+
|Step_Content=The voltage regulator makes it possible to recover a 5V output current.
de récupérer un courant 5V en sortie.
 
  
''*Remarque : Chaque régulateur est ''
+
''*Note: Each controller is different, if you want a 12V output, for example, buy your controller accordingly. Here to connect a USB port we'll  use a 5V one.''
différent, si vous voulez une sortie en 12V,  
 
par exemple, achetez votre régulateur
 
en conséquence. Ici pour connecter
 
un port USB nous prendrons du 5V.
 
  
Le régulateur de tension à 3 tiges
+
The voltage regulator has 3 different rods :
différentes :
+
- 1 entry
- 1 entrée
+
- 1 common
- 1 commun
+
- 1 exit
- 1 sortie
 
  
1 - Souder le pôle négatif du condensateur avec le commun du régulateur de
+
1 - Solder the negative pole of the capacitor with the common of the voltage regulator. Solder the plus of the capacitor to the input of the voltage regulator.''(image 10)''
tension. Souder le plus du condensateur
 
à l’entrée du régulateur de tension.
 
''(image 10)''
 
  
Alternative : utiliser un rehausseur de tension  qui fournira une tension de sortie de 5V (USB) avec une tension d'entrée allant de 0,9 à 5V.
+
Alternative: use a voltage booster that will provide an output voltage of 5V (USB) with an input voltage ranging from 0.9 to 5V.
 
|Step_Picture_00=L_olienne_10_-_Souder_condensateur_-_Re_gulateur_de_tension.jpg
 
|Step_Picture_00=L_olienne_10_-_Souder_condensateur_-_Re_gulateur_de_tension.jpg
 
|Step_Picture_01=L'éolienne_Booster_DCDC.png
 
|Step_Picture_01=L'éolienne_Booster_DCDC.png
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Le circuit électrique – Raccordement du port USB
+
|Step_Title=The electrical circuit - Connecting the USB port
|Step_Content=Lorsque vous posez votre connecteur sur une table avec la lamelle plastique vers le dessus, la patte de droite est votre borne positive, et la patte de gauche votre borne négative.
+
|Step_Content=When you place your connector on a table with the plastic tab facing up, the right tab is your positive terminal, and the left tab is your negative terminal.
  
1 – Souder un fil rouge à la borne positive et un fil noir à la borne négative. Ce seront les fils de sortie de votre éolienne, auxquels vous pouvez connecter une batterie, une ampoule, etc,et dans le cas présent un port USB. ''(image 11)''
+
1 - Solder a red wire to the positive terminal and a black wire to the negative terminal. These will be the output wires of your wind turbine, to which you can connect a battery, a light bulb, etc, and in this case a USB port. (picture 11)
  
2 – Souder le fil rouge avec la sortie du régulateur et le fil noir avec le commun du régulateur. ''(image 12)''
+
2 - Solder the red wire to the regulator output and the black wire to the regulator common. (image 12)''.
  
Votre circuit est prêt à fonctionner vous pouvez y brancher un téléphone, à condition qu’il y ait du vent bien sûr.
+
Your circuit's ready to go. You can connect a telephone to it, provided there is wind of course.''(picture 13)'
''(image 13)''
 
 
|Step_Picture_00=L_olienne_11_-_Raccord_USB.jpg
 
|Step_Picture_00=L_olienne_11_-_Raccord_USB.jpg
 
|Step_Picture_01=L_olienne_12_-_Entre_e_re_gulateur.jpg
 
|Step_Picture_01=L_olienne_12_-_Entre_e_re_gulateur.jpg
Line 440: Line 392:
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Protection du moteur
+
|Step_Title=Motor protection
|Step_Content=Couvrir le moteur et le circuit électrique de chambre à air : cela permettra de les protéger de la pluie ou des embruns.
+
|Step_Content=Cover the engine and the inner tube electrical circuit: this will protect them from rain or sea spray.
''(image 14)''
+
''(picture 14)''
 
|Step_Picture_00=L_olienne_14_-_Prote_ger_syste_me.jpg
 
|Step_Picture_00=L_olienne_14_-_Prote_ger_syste_me.jpg
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Utilisation
+
|Step_Title=Use
|Step_Content=Brancher un téléphone portable ou autre appareil comportant une connexion USB  
+
|Step_Content=Connect a mobile phone or other device with a USB connection to the electrical circuit and let it charge for a few hours.  
au circuit électrique et laisser recharger quelques heures.  
+
In an average wind, allow 5 hours of charging time for a phone battery.
Par vent moyen compter 5 heures de charge pour une batterie de téléphone.
 
 
}}
 
}}
 
{{Notes
 
{{Notes
|Notes=N'hésitez pas à commenter, partager, et agrémenter le tutoriel d'informations utiles à son amélioration.
+
|Notes=Feel free to comment, share, and enhance the tutorial with useful information to improve it.
  
  
RETROUVEZ LE TUTORIEL DE SKAVENJY, inspiré de ce modèle: https://www.skavenji.fr/wp-content/uploads/2019/09/TUTORIEL-EOLIENNE-LOW-TECH-SKAVENJI.pdf
+
FIND THE SKAVENJY TUTORIAL, inspired by this model: [https://www.skavenji.fr/wp-content/uploads/2019/09/TUTORIEL-EOLIENNE-LOW-TECH-SKAVENJI.pdf Click here]
 
}}
 
}}
 
{{Tuto Status
 
{{Tuto Status

Latest revision as of 15:59, 24 January 2020

Tutorial de avatarLow-tech Lab | Categories : Energy

Introduction

In Africa, almost 600 million people in rural areas don't have access to electricity.

Context :

Access to energy and in particular access to electricity is an indispensable condition for a country's economic and sanitary development.

Although the worldwide energy consumption has almost doubled since 1970, it hasn't increased much in poorer countries. To this day approximately 2 billion people can't rely on having access to enough energy for living under reasonable conditions and 1.6 billion people don't have access to electricity at all. Consequences for environment and sanitary conditions are enormous.

Renewable energies like the wind turbine might be a solution: A wind turbine converts kinetic energy in the form of wind into electrical energy.


Industrial wind turbines

An industrial wind turbine with a power output of 2 megawatts produces about 4400 megawatt hours per year, which is equal to the consumption of around 2000 people. Industrial wind turbines are full of sensors, movable parts, controllers and mechanical parts in general. Their production is complex and the environmental impact when building a wind turbine isn't neutral at all. Additionally up to today it isn't possible to repair a wind turbine for common people.


The low-tech wind turbine

A low tech wind turbine for less than 10€, simple to build from recycled parts, that's possible. Despite their slight power output compared to industrial wind turbines, they are quite good for many local applications like charging a mobile phone, powering LEDs or a little pump. For these applications some watts will be sufficient.

This wind turbine might therefore be very useful for remote areas without an electricity grid but with favorable winds. In Senegal e.g. only 40 per cent of the population is connected connected to the electricity grid in urban zones and only 10 per cent in rural areas. The ability to generate electricity with the help of a self-built wind turbine

provides a good opportunity.

Video overview

Materials

Wind turbine

1- A wooden plank (minimum 10mm thick)

2- A piece of flat steel (minimum 2mm thick)

3- A stepper motor from a printer (with it's connectors)

4- A PVC tube (diameter between 55mm and 100mm;

   wall thickness minimum 3mm)

5- A bicycle inner tube

6- Some wood screws


Electric circuit :

3- Stepper motor from a printer

8- A support made from plastic, to take the different system components

   (you could e.g. use a flat part of the printer housing)

9- Two rectifier diodes or bridge rectifiers

10- One capacitor, 1000µF 16V

11- A voltage stabilizer LM7805 for fixing the voltage at 5V

    or LM7812 for fixing the voltage at 12V

11'- Instead of the tension stabilizer you could also use a voltage amplifier

     or a DC/DC booster or even more advance it by supplying the USB connector
     with a voltage between 0,9 and 5 Volts.

12- An USB connector

13- solder

14- wire

Also take a look at global 3D model of this wind turbine after reading. [1]

Tools

Wind turbine

a - A vise

b - a saw for metal and wood

c - a ruler

d - a cordless screwdriver

e - a voltmeter

f - alligator clamps


Electric circuit

g - wire cutting pliers

h - a soldering iron

Step 1 - How it Works

This tutorial shows how to build a small wind turbine from old stepper motor

from an old printer or photocopier. It is able to e.g. charge a mobile phone.


1 - Rotation of the blades

Powered by the wind, the propeller, also called rotor, starts to move. The blades rotate.

The rotor has 4 blades and is mounted on a mast in order to get more wind.


2 - Production of electricity

The rotor propels a stepper motor.

From the rotors rotation energy the stepper motor produces an alternating current (AC)


3 - Electric circuit

The circuit "handles" the alternating current from the motor output, so that it can be used to charge a mobile phone or another device via USB.


It consists of:

-The rectifiers, which "rectify" the tension from the motor output

in order to provide a direct current (DC).

- A capacitor which allows a continuous power supply,

 although the wind doesn't blow at a constant speed.

A tension stabilizer which limits the tension produced by the motor at the desired voltage, e.g. 5V.

In order for the wind turbine to start rotating, a minimum wind speed of 10-15km/h is necessary.



Step 2 - Steps Involved in Making the System

Wind turbine

1 - Preparing the motor

2 - Motor axis

3 - Preparing the rotor blades

4 - Aileron and base for rotor blades

5 - Assembly


Electric circuit

1 - Rectifiers

2 - Capacitors

3 - tension stabilizer

4 - Connecting the USB port

Motor protection

Step 3 - L'éolienne - Le moteur

Choosing the motor

In general, the more steps the motor has, the lower the speed at constant voltage. Important technical data for the selection of the motor are : - The maximum or nominal voltage (measured in volts): Vmax - The current per phase (measured in amperes / phase): A/ph - Number of steps or step angle (measured in °)

For example, a stepper motor with an angle of 3.6° will have 360/3.6 = 100 steps, a 1.8° motor will have 360/1.8 : 200 steps . If you had to choose between two motors with identical characteristics (Vmax and A/ph), prefer the motor with the highest number of steps (here the 1.8° motor since it has 200 steps), it will require a lower rotation speed to deliver a satisfactory voltage.

The choice of motor will also be conditioned by the maximum voltage (Vmax). A motor characterized at 3V will deliver a much lower power than a motor characterized at 50V at the same rotation speed. Choose your motor (within the limit of the available choice) according to the desired application and the required power.


1 - Cut the 6 wires coming out of the stepper motor, strip and twist them.

From the two possible methods:

Method #1

In order to find out which of the 6 wires has the highest output voltage, all possible motor output torques must be tested and the two highest selected.

2 - Using a screwdriver, a voltmeter set to " AC " and alligator clips, test the pairs of wires. Note the tension for each pair. (picture 1)

3 - Select the two wire pairs with the highest output voltage (here 10V, this may vary depending on the motor). These will then be connected to the electrical circuit of the wind turbine.

* Tip: Mark with colored tape the two selected couples so they don't get mixed up with each other.

Method #2

In fact, stepper motors are schematically made up of two or four coils:

(picture 2)

As described in the picture, in the case of a 6-wire we will not use the mid-point. In fact, we will accumulate two coils to make one and generate more tension.

From this point, it's very simple:

1) Just put your multimeter in ohm meter mode, or even better in contact detection mode (you know when it does "BBIIIIPPPPP !!" when the two probes are touching ).

2) The first step is to separate the two sets of wire for each coil.

For a 4-wire system, it's very simple: you take one wire on one probe, and with the other probe you touch the other wires. When there is one that goes "BBBIIIIIPPPPP!!" or the measured resistance becomes low (it depends on the motor but a wide range would be 1 to 50 ohms) you are good you have found your coil and by elimination the two remaining wires are for the other coil.

For a 6 wire it is hardly more complex: we apply the same method to determine the sets of 3 wires per spool. Then we switch to ohmeter mode and look for which pair of wires per coil gives the highest pllus resistance ==> bingo you have found the right wires for one coil, repeat the operation for the other and you are good.

Note: there are also 8 wires. In fact it is a 6-wire (so 4 coils) but with 4 independent coils (like a 4-wire so ...). So use the 4-wire method but more times.


Step 4 - The Wind Turbine - Motor Axis

1 - Cutting a metal plate of 80x30 cm. Drill it with 5 holes of diameter 4mm.

* Tip: You can use figure 1 above to cut and drill the plate.

2 - Weld the motor shaft to the central hole of the metal plate (picture 2).


Step 5 - The Wind Turbine - Blade Preparation

From the formula linking the wind speed, a given surface and the power of the wind on this surface :

L olienne - quipe des l phants - Hack le Lab Formule puissance vent.gif

This formula can be used to calculate the length of the blades of the wind turbine:

L olienne - quipe des l phants - Hack le Lab Relation longueur pale - vitesse vent.gif

Where:

  • L = blade length in m
  • P = characteristic power of the motor in W
  • V = wind speed in m/s (depending on location)

Under normal conditions, the length of the blade should be 35 cm.

1 - Draw and cut the blades in a PVC tube. (picture 3).

* Tip: You can help yourself from the diagram 2 above to draw the shape of the blades.

Figure 3 shows the cutting direction.

2 - Sand the edges of each of the blades: the leading edge must be rounded, and the trailing edge sharpened.

3 - Drill the blades: the drilling is carried out as close as possible to the trailing edge so that the latter can be fixed flat on the plate that carries the blades. (image 4)

Your blades are ready!

Step 6 - The Wind Turbine - Fins and Blade Bases

1 - In a wooden board, draw and cut out the fin. (image 5)

* Tip: You can use figure 3 above to draw the shape of the fin.

2 - In the same board, cut out a square the size of your engine (here 80x80cm) which will be used to accommodate the blades previously cut out in order to join them together. (diagram 3 - base of the blades).

3 - On the aileron, mark the location of the motor so that it can be forced into the shape. (diagram 3 - motor)

* Note: The dimensions of this part depend on the size of your motor.

4 - Sand the edges of the aileron for better aerodynamics and better rendering. (frame 5)


Step 7 - The Wind Turbine - Assembly

1 - Screw the blades (cut out in step 3) to their base (cut out in step 4).

2 - Screw the base of the blades to the metal plate. Use the holes drilled in the metal plate in step 2. (image 6).

3 - Check that there is the same angle between each of the blades.



Step 8 - The electrical circuit - Rectifiers

The electrical circuit is as shown in "Figure 4".

At the output of the engine, we get alternating current (AC). However, to charge a battery or light a lamp, it is necessary to have direct current (DC). Two rectifiers are used to transform alternating current into direct current: they "rectify" the voltage at the output of the motor.

Each rectifier has 4 legs: The two central legs are the alternating poles of the capacitor. The two outer legs are the positive and negative poles of the capacitor.

* Tip: on the rectifier head each of these 4 poles are marked

1 - Solder the stepper motor voltage outputs (previously selected) to the alternating inputs of each rectifier: the first torque with the alternating poles of the first rectifier, and the second torque with the alternating poles of the second rectifier.(image 7).

* Tip: It is possible to use heat shrink tubing to cover the connections to protect the system.

2 - Solder the negative outputs of the two rectifiers together, then solder the positive outputs of the two rectifiers together. "(picture 8).

Step 9 - The electrical circuit - Capacitor

The energy supplied by the wind turbine is not constant because the wind speed is constantly changing. The overload must therefore be temporarily stored in order to to be able to redistribute it consistently. A capacitor is used for this purpose.

The capacitor is a polarized component: - the positive terminal is the longest leg - the negative terminal is the shortest leg

* Tip: It is also possible to refer to the "-" symbol written on the minus pole.

1 - Solder the negative poles together and then the positive poles together at the rectifier output. (image 9).

* Tip: If the legs of your components are too short to weld together, you can connect them with electrical wires.



Step 10 - The electrical circuit - Voltage regulator or voltage booster

The voltage regulator makes it possible to recover a 5V output current.

*Note: Each controller is different, if you want a 12V output, for example, buy your controller accordingly. Here to connect a USB port we'll use a 5V one.

The voltage regulator has 3 different rods : - 1 entry - 1 common - 1 exit

1 - Solder the negative pole of the capacitor with the common of the voltage regulator. Solder the plus of the capacitor to the input of the voltage regulator.(image 10)

Alternative: use a voltage booster that will provide an output voltage of 5V (USB) with an input voltage ranging from 0.9 to 5V.


Step 11 - The electrical circuit - Connecting the USB port

When you place your connector on a table with the plastic tab facing up, the right tab is your positive terminal, and the left tab is your negative terminal.

1 - Solder a red wire to the positive terminal and a black wire to the negative terminal. These will be the output wires of your wind turbine, to which you can connect a battery, a light bulb, etc, and in this case a USB port. (picture 11)

2 - Solder the red wire to the regulator output and the black wire to the regulator common. (image 12).

Your circuit's ready to go. You can connect a telephone to it, provided there is wind of course.(picture 13)'


Step 12 - Motor protection

Cover the engine and the inner tube electrical circuit: this will protect them from rain or sea spray. (picture 14)



Step 13 - Use

Connect a mobile phone or other device with a USB connection to the electrical circuit and let it charge for a few hours. In an average wind, allow 5 hours of charging time for a phone battery.

Notes and references

Feel free to comment, share, and enhance the tutorial with useful information to improve it.


FIND THE SKAVENJY TUTORIAL, inspired by this model: Click here

Comments

Published