Fonctionnement, entretien et régénération de batteries au plomb/en : Différence entre versions

(Page créée avec « These batteries are used in emergency power supplies, in particular for computer or telecommunication systems. They are designed so as to be constantly recharged and to be... »)
 
(114 révisions intermédiaires par 2 utilisateurs non affichées)
Ligne 3 : Ligne 3 :
 
|Main_Picture_annotation={"version":"3.5.0","objects":[{"type":"image","version":"3.5.0","originX":"left","originY":"top","left":-20,"top":47,"width":470,"height":264,"fill":"rgb(0,0,0)","stroke":null,"strokeWidth":0,"strokeDashArray":null,"strokeLineCap":"butt","strokeDashOffset":0,"strokeLineJoin":"miter","strokeMiterLimit":4,"scaleX":1.35,"scaleY":1.35,"angle":0,"flipX":false,"flipY":false,"opacity":1,"shadow":null,"visible":true,"clipTo":null,"backgroundColor":"","fillRule":"nonzero","paintFirst":"fill","globalCompositeOperation":"source-over","transformMatrix":null,"skewX":0,"skewY":0,"crossOrigin":"","cropX":0,"cropY":0,"src":"https://wiki.lowtechlab.org/images/a/ab/Fonctionnement_entretien_et_r_g_n_ration_de_batteries_au_plomb_batterie-solaire-2v-12v-24v.jpg","filters":[]}],"height":449.59785522788206,"width":600}
 
|Main_Picture_annotation={"version":"3.5.0","objects":[{"type":"image","version":"3.5.0","originX":"left","originY":"top","left":-20,"top":47,"width":470,"height":264,"fill":"rgb(0,0,0)","stroke":null,"strokeWidth":0,"strokeDashArray":null,"strokeLineCap":"butt","strokeDashOffset":0,"strokeLineJoin":"miter","strokeMiterLimit":4,"scaleX":1.35,"scaleY":1.35,"angle":0,"flipX":false,"flipY":false,"opacity":1,"shadow":null,"visible":true,"clipTo":null,"backgroundColor":"","fillRule":"nonzero","paintFirst":"fill","globalCompositeOperation":"source-over","transformMatrix":null,"skewX":0,"skewY":0,"crossOrigin":"","cropX":0,"cropY":0,"src":"https://wiki.lowtechlab.org/images/a/ab/Fonctionnement_entretien_et_r_g_n_ration_de_batteries_au_plomb_batterie-solaire-2v-12v-24v.jpg","filters":[]}],"height":449.59785522788206,"width":600}
 
|Licences=Attribution (CC BY)
 
|Licences=Attribution (CC BY)
|Description=Batteries are central/the key and expensive elements in stand-alone installations. However, their operation and maintenance are not well known/not well understood by the general public.
+
|Description=Batteries are essential and expensive elements in off-grid installations. However, their operation and maintenance are not well known/not well understood by the general public.
  
 
This tutorial, therefore, has several objectives:
 
This tutorial, therefore, has several objectives:
 
* Present/Explain how a lead-acid battery works.
 
* Present/Explain how a lead-acid battery works.
*Present/Explain the different types of lead acid batteries
+
*Present/Explain the different types of lead acid batteries.
 
* Present/Explain the major causes of degradation of lead batteries.
 
* Present/Explain the major causes of degradation of lead batteries.
 
* Present/Explain the rules for the use and maintenance of lead batteries.
 
* Present/Explain the rules for the use and maintenance of lead batteries.
Ligne 27 : Ligne 27 :
  
  
The damage will result in reduced battery life and, in some cases, there could be irreparable deterioration of batteries. Batteries will last longer when used properly, and  so their replacement will be less frequent. In the long run, one can make considerable savings. Another interesting aspect is that the conversion system will be more efficient if the batteries are in a good condition. The better the batteries’ condition, the more efficient the installation will be.
+
The damage will result in reduced battery life and, in some cases, there could be irreparable deterioration of batteries. Batteries will last longer when used properly, and  so their replacement will be less frequent. '''In the long run, one can make considerable savings'''. Another interesting aspect is that the conversion system will be more efficient if the batteries are in a good condition. The better the batteries’ condition, the more '''efficient''' the installation will be.
  
  
Ligne 37 : Ligne 37 :
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Constitution d'une batterie au plomb
+
|Step_Title=Composition of a lead-acid battery
|Step_Content=A lead battery is made up of a set of accumulators./cells. The nominal voltage of an accumulator/cell is approximately 2.1 V, and so a 12-V battery consists of six accumulator/cell mounted in series and connected by welded lead. (A series of cells connected in series, or parallel is called module) The accumulators/cells are fitted/packed in a plastic container and sealed with a lid.
+
|Step_Content=*A lead battery is made up of 'a set of cells'. The nominal voltage of an accumulator/cell is approximately 2.1 V, and so a 12-V battery consists of six accumulator/cell mounted in series and connected by welded lead. (A series of cells connected in series, or parallel is called module) The cells are fitted/packed in a plastic container and sealed with a lid.
Each accumulator comprises pairs of positive and negative electrodes (plates) connected in parallel, with a separator in between each pair.  
+
*Each cell comprises pairs of 'positive and negative electrodes' (plates) connected in parallel, with a separator in between each pair.  
The separators are generally rectangular sheets, inserted between the positive plates and the negative plates, and have the following important characteristics:
+
*The 'separators' are generally rectangular porous sheets, inserted between the positive plates and the negative plates, and have the following important characteristics:
o they serve/act as perfect electrical insulators.  
+
**they serve/act as perfect electrical insulators.  
o they are highly permeable to ions carrying electrical charges.
+
**they are highly permeable to ions carrying electrical charges.
o they have excellent resistance to sulfuric acid,
+
**they have excellent resistance to sulfuric acid,
  
The electrodes are composed of a grid on which is deposited a porous active material: lead (Pb) on the negative electrode and lead dioxide (PbO2) on the positive electrode. The grid collects the current and also serves as a mechanical support for the active material.
+
*The '''electrodes''' are composed of a '''grid''' on which is deposited a porous active material: '''lead (Pb)''' on the '''negative electrode''' and '''lead dioxide''' (PbO2) on the '''positive electrode'''. The grid collects the current and also serves as a mechanical support for the active material.
The electrolyte is a dilute solution of sulfuric acid in which the electrodes are immersed. It can be in liquid, gel or absorbed form in fiberglass felts, depending on the type of battery.
+
*The '''electrolyte''' is a '''dilute solution of sulfuric acid''' in which the electrodes are immersed. It can be in liquid, gel or absorbed form in fiberglass felts, depending on the type of battery.
 
|Step_Picture_00=Fonctionnement__entretien_et_r_g_n_ration_de_batteries_au_plomb_Sch_ma_batteries.JPG
 
|Step_Picture_00=Fonctionnement__entretien_et_r_g_n_ration_de_batteries_au_plomb_Sch_ma_batteries.JPG
 
|Step_Picture_01=Fonctionnement__entretien_et_r_g_n_ration_de_batteries_au_plomb_capture-decran-2020-07-06-a-08.54.22.png
 
|Step_Picture_01=Fonctionnement__entretien_et_r_g_n_ration_de_batteries_au_plomb_capture-decran-2020-07-06-a-08.54.22.png
Ligne 58 : Ligne 58 :
 
Reaction during discharge: During discharge, the following chemical reaction takes place:
 
Reaction during discharge: During discharge, the following chemical reaction takes place:
  
PbO2 sol + Pb sol + 2 HSO4−aq + 2 H+aq ⟶ 2 PbSO4 sol + 2 H2O liq
+
[https://fr.wikipedia.org/wiki/Dioxyde_de_plomb PbO<sub>2 sol</sub>] + [https://fr.wikipedia.org/wiki/Plomb Pb<sub> sol</sub>] + 2 [https://fr.wikipedia.org/wiki/Hydrog%C3%A9nosulfate HSO<sub>4</sub><sup>−</sup><sub>aq</sub>] + 2 [https://fr.wikipedia.org/wiki/Proton H<sup>+</sup><sub>aq</sub>] ⟶ 2 [https://fr.wikipedia.org/wiki/Sulfate_de_plomb(II) PbSO<sub>4 sol</sub>] + 2 [https://fr.wikipedia.org/wiki/Eau H<sub>2</sub>O<sub> liq</sub>]
  
<div class="mw-translate-fuzzy">
+
**The positive (+) electrode which is '''lead dioxide''' converts into '''lead sulphate''' crystals.  
The positive (+) electrode which is lead dioxide converts into lead sulphate crystals. (TVP: Maybe rewrite is as: The positive electrode, which is lead dioxide, reacts with the electrolyte sulphuric acid to form lead sulphate crystals and water in a reduction reaction),
+
**The negative electrode (-) which is made of '''lead''' also changes into '''lead sulphate''' crystals.  
o The negative electrode (-) which is made of lead also changes into lead sulphate crystals. (Or: The negative elctrode which is lead, also reacts with sulphuric acid to form lead sulphate crystals and water in an oxidation reaction).
+
**The '''electrolyte''' bath in which the reactions take place is largely transformed into water (H2O).
o The electrolyte bath in which the reactions take place is largely transformed into water ((H2O).
 
</div>
 
  
  
Reaction during Charge
+
*'''Reaction during Charge :''' When charging, the reverse chemical reaction takes place:
 
 
When charging, the reverse chemical reaction takes place:
 
2PbSO4 sol + 2 H2O liq ⟶ Pb sol + PbO2 sol + 2 HSO4−aq + 2 H+aq.
 
  
 
[https://fr.wikipedia.org/wiki/Sulfate_de_plomb(II) 2PbSO<sub>4 sol</sub>] + 2 [https://fr.wikipedia.org/wiki/Eau H<sub>2</sub>O<sub> liq</sub>] ⟶ [https://fr.wikipedia.org/wiki/Plomb Pb<sub> sol</sub>] + [https://fr.wikipedia.org/wiki/Dioxyde_de_plomb PbO<sub>2 sol</sub>] + 2 [https://fr.wikipedia.org/wiki/Hydrog%C3%A9nosulfate HSO<sub>4</sub><sup>−</sup><sub>aq</sub>] + 2 [https://fr.wikipedia.org/wiki/Proton H<sup>+</sup><sub>aq</sub>].
 
[https://fr.wikipedia.org/wiki/Sulfate_de_plomb(II) 2PbSO<sub>4 sol</sub>] + 2 [https://fr.wikipedia.org/wiki/Eau H<sub>2</sub>O<sub> liq</sub>] ⟶ [https://fr.wikipedia.org/wiki/Plomb Pb<sub> sol</sub>] + [https://fr.wikipedia.org/wiki/Dioxyde_de_plomb PbO<sub>2 sol</sub>] + 2 [https://fr.wikipedia.org/wiki/Hydrog%C3%A9nosulfate HSO<sub>4</sub><sup>−</sup><sub>aq</sub>] + 2 [https://fr.wikipedia.org/wiki/Proton H<sup>+</sup><sub>aq</sub>].
Ligne 76 : Ligne 71 :
 
<br />
 
<br />
  
Lead sulphate crystals dissolve/(are broken down into) lead dioxide which is deposited on the (+) electrode and lead which is deposited on the (-) electrode.  
+
**'''Lead sulphate crystals dissolve'''/(are broken down into) lead dioxide which is deposited on the (+) electrode and lead which is deposited on the (-) electrode.  
    o The electrolyte reverts to dilute sulfuric acid.
+
**The electrolyte reverts to dilute sulfuric acid.
  
 
<br />
 
<br />
Ligne 83 : Ligne 78 :
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=The units of the batteries are indicated as abbreviations which are not always easy to understand. Here is a summary table of the units associated with the batteries:
+
|Step_Title=The characteristic units of the batteries
|Step_Content=Characteristic?? Unit Definition Explanation
+
|Step_Content=The units of the batteries are indicated as abbreviations which are not always easy to understand. Here is a summary table of the units associated with the batteries :
Capacity (Ah) The amount of current that a battery can store or release, usually specified in Ah for a given discharge rate. A 10 Ah battery can produce 5 Amperes (A) for 2 hours (h).
+
{| class="wikitable"
Tension (V) Battery voltage level. It must be compatible with the connected devices.
+
|+
Lead-acid batteries are made up of units delivering 2.1 Volts (V) and connecting these units in series makes it possible to reach the generally desired voltage. For example, six units connected in series deliver 12 V. To create 24 V or 48 V systems, 12 V batteries are, in turn, connected in series.
+
!Characteristic
Energy (Wh) The product of multiplication of the capacity by the voltage. A 200Ah 24V battery will have an energy of 4800 Watts hour (Wh).
+
!Definition
 
+
!Explanation
Discharge rate, Cxx Expressed  as a unit of C10, C20 or C100, it indicates the capacity of a battery according to its rate of discharge. Here in Cx, x is the time in hours that it takes to discharge the battery. 50Ah C20 battery means a battery of 50Ah capacity with 20h discharge
+
|-
C100 battery: 90Ah (capacity of 90Ah with a discharge in 100h)
+
|Capacity (Ah)  
+
|The amount of current that a battery can store or release, usually specified in Ah for a given discharge rate.
Cold Cracks Amps (CCA) This is the maximum extractable current from a battery over a short period when starting the engine, for example. CCA 420A 5 sec indication means the battery can deliver 420A for 5 sec
+
|A 10 Ah battery can produce 5 Amperes (A) for 2 hours (h).
 
+
|-
SOC (State of Charge) State of charge of a battery,  which indicates the amount of electricity remaining. SOC = 50 %: the battery’s charge is 50%.  
+
|Tension (V)  
DOD (Depth of Discharge) State of discharge of a battery, or the amount of electricity consumed. DOD + SOC = 100%  
+
|Battery voltage level. It must be compatible with the connected devices.
Number of cycles For a battery, a cycle represents a discharge followed by a charge. The number of cycles of a battery depends on the depth of discharge or amount of electricity consumed.  The higher the DOD, the lower the cycle life.
+
|Lead-acid batteries are made up of units delivering 2.1 Volts (V) and connecting these units in series makes it possible to reach the generally desired voltage. For example, six units connected in series deliver 12 V. To create 24 V or 48 V systems, 12 V batteries are, in turn, connected in series.
The same battery can have:
+
|-
 +
|Energy (Wh)  
 +
|The product of multiplication of the capacity by the voltage.
 +
|A 200Ah 24V battery will have an energy of 4800 Watts hour (Wh).
 +
|-
 +
|Discharge rate, C<sub>xx</sub>
 +
|Expressed  as a unit of C<sub>10</sub>, C<sub>20</sub>or C<sub>100</sub>, it indicates the capacity of a battery according to its rate of discharge.  
 +
|50Ah C<sub>20</sub>battery means a battery of 50Ah capacity with 20h discharge
 +
C<sub>100</sub>battery: 90Ah (capacity of 90Ah with a discharge in 100h).
 +
|-
 +
|Cold Cracks Amps (CCA)  
 +
|This is the maximum extractable current from a battery over a short period when starting the engine, for example.
 +
|CCA 420A 5 sec indication means the battery can deliver 420A for 5 sec.
 +
|-
 +
|SOC (State of Charge)  
 +
|State of charge of a battery,  which indicates the amount of electricity remaining.
 +
|SOC = 50 %: the battery’s charge is 50%.  
 +
|-
 +
|DOD (Depth of Discharge)  
 +
|State of discharge of a battery, or the amount of electricity consumed.
 +
|DOD + SOC = 100% .
 +
|-
 +
|Number of cycles
 +
|For a battery, a cycle represents a discharge followed by a charge. The number of cycles of a battery depends on the depth of discharge or amount of electricity consumed.   
 +
|The higher the DOD, the lower the cycle life, the same battery can have.
  
500 cycles at 80% DOD
+
*500 cycles at 80% DOD
750 cycles at 50% DOD
+
*750 cycles at 50% DOD
1800 cycles at 30% DOD
+
*1800 cycles at 30% DOD
  
 
<br />
 
<br />
Ligne 111 : Ligne 130 :
 
|Step_Content=There are several types of and technologies for lead batteries, each adapted to a particular use, environment and constraints. Understanding the differences is essential to choosing and maintaining your battery correctly. This part summarizes the main categories of lead acid batteries and their characteristics.
 
|Step_Content=There are several types of and technologies for lead batteries, each adapted to a particular use, environment and constraints. Understanding the differences is essential to choosing and maintaining your battery correctly. This part summarizes the main categories of lead acid batteries and their characteristics.
  
<br />{{Warning|Ne jamais mélanger des batteries de différents types.
+
<br />{{Warning|Never mix batteries of different types.
  
 
It is important to note that one should never mix batteries of different types. The following combinations are to be avoided:
 
It is important to note that one should never mix batteries of different types. The following combinations are to be avoided:
Old and new batteries
+
*Old and new batteries.
Different capacities
+
*Different capacities.
Different battery types
+
*Different battery types.
Different brands
+
*Different brands.
Different technologies or chemistry
+
*Different technologies or chemistry}}<br />
 +
====Batteries according to their use : ====
  
Starter battery:
+
*'''<u>Starter battery:</u>'''
  
A starter battery is intended to provide high current for a very short time. It is designed to start an engine (for example a vehicle or a generator). Starter batteries are sometimes called "car battery", "truck battery" or "thin plate battery".     View inside a starter battery
+
A starter battery is intended to provide high current for a very short time. It is designed to start an engine (for example a vehicle or a generator). Starter batteries are sometimes called "car battery", "truck battery" or "thin plate battery".  
 +
[https://www.youtube.com/watch?v=fYGvX-jkVtQ&t=282 View inside a starter battery .]
 +
<br />
 +
{{Warning|Starter batteries are not made for cyclic use. They are designed only for high discharge currents of very short duration. Thus, they cannot be used in an electrical conversion system / photovoltaic installation. Even if it is tempting to use them because they are easily available at low cost, it will cause malfunctions finally.}}
  
Starter batteries are not made for cyclic use. They are designed only for high discharge currents of very short duration. Thus, they cannot be used in an electrical conversion system / photovoltaic installation. Even if it is tempting to use them because they are easily available at low cost, it will cause malfunctions finmally.
+
*'''<u>Traction battery</u>'''
  
• Traction battery
+
The name of these batteries comes from their first use: powering the motor of electric vehicles such as forklifts. They are generally equipped with "thick or tubular plates" which allows them to '''withstand fairly deep discharges and have a long lifespan'''. They are well suited for use in solar photovoltaics. 
  
The name of these batteries comes from their first use: powering the motor of electric vehicles such as forklifts. They are generally equipped with "thick or tubular plates" which allows them to withstand fairly deep discharges and have a long lifespan. They are well suited for use in solar photovoltaics.
+
The '''batteries [https://www.batterie-solaire.com/batterie-OPZS OPzS] ('''liquid electrolyte''') and [https://www.batterie-solaire.com/batterie-opzv OPzV]''' (gel electrolyte) have almost the same characteristics as traction batteries.  
  
OPzS (liquid electrolyte, (OPzS is an abbreviation of O 'Ortsfest' (stationary), Pz 'PanZerplatte' (tubular plate), S 'Flüssig' (flooded)) and OPzV (gel electrolyte, OPzV stands for Ortsfest (stationary) PanZerplatte (tubular plate) Verschlossen (closed).)) batteries have almost the same characteristics as traction batteries.
+
<br />
  
<br />
+
*'''<u>Stationary battery</u>'''
  
• Stationary battery
+
These batteries are used in '''emergency power supplies''', in particular for computer or telecommunication systems. They are designed so as to be constantly recharged and to be discharged only infrequently.
  
These batteries are used in emergency power supplies, in particular for computer or telecommunication systems. They are designed so as to be constantly recharged and to be discharged only infrequently.
 
  
 +
*'''<u>Solar battery / slow discharge</u>'''
  
*'''<u>Batterie solaire / à décharge lente</u>'''
+
These batteries are intended for use in photovoltaic solar installations. They are designed to withstand a high number of cycles (since they will be discharged every night and recharged every morning), and their depth of discharge is generally good but can vary greatly from one model to another. Service batteries have almost the same characteristics as solar batteries.
  
Ces batteries sont prévues pour être utilisées dans des '''installations solaires photovoltaïques.''' Elles sont conçues pour supporter un nombre élevé de cycle (puisqu’elles seront déchargées toutes les nuits et rechargées tous les matins), leur profondeur de décharge est généralement bonne mais peut varier fortement d’un modèle à l’autre. Les  '''batteries de servitudes''' présentent à peu près les mêmes caractéristiques que les batteries solaires.
+
<br />[https://www.youtube.com/watch?v=4tdPLAsTKNo View the  inside a slow cycle/solar battery]
<br />[https://www.youtube.com/watch?v=4tdPLAsTKNo Voir l'intérieur d'une batterie à décharge lente / solaire]
 
  
  
====Les batteries en fonction de leur technologie / électrolyte====
+
====Batteries according to their technology / electrolyte====
  
*'''<u>Batterie ouverte</u>'''
+
*'''<u>Open battery</u>'''
  
Une batterie ouverte est une batterie à électrolyte liquide dotée de bouchons permettant de la remplir. Les batteries ouvertes ne sont pas étanches : le liquide qui est à l'intérieur s'évapore peu à peu, il faut donc contrôler régulièrement son niveau et compléter si nécessaire avec de l'eau distillée.  
+
An open battery is a battery with liquid electrolyte equipped with plugs allowing to fill it. Open batteries are not watertight: the liquid inside evaporates little by little, so it is necessary to check its level regularly and top it up if necessary with distilled water.  
 
{| class="wikitable"
 
{| class="wikitable"
 
|+
 
|+
!Avantages
+
!Advantages
!Inconvénients
+
!Disadvantages
 
|-
 
|-
|Réparable
+
|Repairable
|Entretien nécessaire
+
|Maintenance required
 
|-
 
|-
|Permet les courants forts à froid (CCA)
+
|Delivers current in cold temperatures ( Their CCA rating indicates the battery has sufficient power to crank an engine in very cold temperatures)
|Risque de non homogénéité de l'électrolyte si peu utilisé = vieillissement prématuré
+
|Risk of non-homogeneity of the electrolyte if little used = premature aging
 
|-
 
|-
|Supporte les surcharges et les surchauffes (on peut remettre du liquide si celui-ci s'évapore)
+
|Withstands overloads and overheating (one can add liquid if it evaporates)
|Dégagement d'hydrogène, donc risque d'explotion si milieu non aéré
+
|Release of hydrogen and, therefore, risk of explosion if environment not ventilated
 
|-
 
|-
|Prix faible
+
|Low cost
|N'aime pas le froid, risque de gel de l'électrolyte.
+
|Not conducive to cold, risk of electrolyte freezing
 
|-
 
|-
 
|
 
|
|Forte autodécharge (10-12% par mois) si pas utilisé régulièrement.
+
|Strong self-discharge (10-12% per month) if not used regularly.
 
|-
 
|-
 
|
 
|
|Fuites possibles si basculée
+
|Leaks possible if there is tilting or shaking/vibrations
 
|}
 
|}
 
<br />
 
<br />
  
*'''<u>Batterie liquide scellée / étanche</u>'''
+
*'''<u>Sealed, leak-proof liquid batteries</u>'''
  
Une batterie étanche est une batterie à électrolyte liquide dotée d'un système permettant d’empêcher l'évaporation de l'eau contenu dans l'électrolyte, par recombinaison des gaz. Ces batteries ne nécessitent pas de maintenance. Ces batteries sont souvent appelées '''VRLA''' pour ''Valve Regulated Lead-Acid''.  
+
A sealed battery is a liquid electrolyte battery equipped with a system to prevent the evaporation of the water contained in the electrolyte, by gas recombination. These batteries do not require maintenance, and are often called '''VRLA''' for "Valve Regulated Lead-Acid batteries".
 
{| class="wikitable"
 
{| class="wikitable"
 
|+
 
|+
!Avantages
+
!Advantages
!Inconvénients
+
!Disadvantages
 
|-
 
|-
|Réduit la production de gaz explosif, les pertes en eau et les fuites
+
|Reduces explosive gas production, water loss and leakage.
|Ne permet plus l'entretien, ni le contrôle
+
|Does not allow maintenance or control.
 
|-
 
|-
|Nécessite moins de maintenance
+
|Requires less maintenance.
|Impose une charge parfaitement régulée en fonction de la température pour éviter les pertes de gaz par surpression
+
|Imposes a perfectly regulated load according to the temperature to avoid gas losses by excessive pressure.
 
|}
 
|}
 
<br />
 
<br />
  
*'''<u>Batterie AGM</u>'''
+
*'''<u>AGM batteries</u>'''
  
Les batteries AGM sont un type de batterie étanche / VRLA. Dans une batterie AGM, l'électrolyte est liquide mais maintenu en place dans un buvard en fibre de verre, d'où son nom: Absorbed Glass Material.  
+
AGM batteries are a type of sealed/VRLA battery, in which the electrolyte is a liquid but it is held in place in a fiberglass blotter, and hence its name: Absorbed Glass Material.  
<br />[https://www.youtube.com/watch?v=MySMrdb2nwQ Voir l'intérieur d'une batterie AGM]
+
<br />[https://www.youtube.com/watch?v=MySMrdb2nwQ View the inside of an AGM battery]
 
{| class="wikitable"
 
{| class="wikitable"
 
|+
 
|+
!Avantages
+
!Advantages
!Inconvénients
+
!Disadvantages
 
|-
 
|-
|Sans entretien avec un faible dégagement gazeux
+
|Maintenance-free with minimal release of gas
|Ne supporte pas la chaleur (perte de l'électrolyte sous forme de gaz - effet définitif)
+
|They do not perform well in hot conditions (loss of electrolyte in the form of gas at higher temperatures) A temperature above 49°C (120°F) is very dangerous for the battery life. 
 
|-
 
|-
|Bon maintient de l'homogénéité de l'électrolyte
+
|They maintain the electrolyte homogeneity well.
|Ne supporte pas les surcharges (perte de l'électrolyte sous forme de gaz - effet définitif)
+
|They are sensitive to overcharging and high voltages (loss of electrolyte in the form of gas)
 
|-
 
|-
|Supporte bien le froid car électrolyte homogène
+
|Withstand colder temperatures well because of their homogeneous electrolyte (Since the electrolyte is held in the glass mat separators, it won't expand when frozen like it will in a flooded battery)
|Durée de vie limitée (taux d'acidité obligatoirement élevé)
+
|They have limited shelf-life (as the acid concentration inside is higher than in others, which leads to faster battery degradation)
 
|-
 
|-
|Permet de faire passer des courants de crête forts (CCA)
+
|Allows high peak currents (CCA) to pass
 
|
 
|
 
|-
 
|-
|Résiste bien aux chocs car tout est bien maintenu à l'intérieur
+
|Shock-resistant (Vibration-resistant) (Because of the fibre glass mats are woven tightly and the plates are packed tightly, making them immune to vibrations)
 
|
 
|
 
|-
 
|-
|Faible autodécharge (1-3% par mois)
+
|Low self-discharge (1-3% per month)
 
|
 
|
 
|}
 
|}
  
  
*'''<u>Batterie gel</u>'''
+
*'''<u>Gel batteries</u>'''
  
Les batteries gel sont un type de batterie étanche / VRLA. Dans une batterie gel, l'électrolyte est gélifié par ajout de silicate.  
+
Gel batteries are a type of sealed battery / VRLA. In a gel battery, the electrolyte is gelled by adding silicate.  
<br />[https://www.youtube.com/watch?v=d7pwE3u0kmo Voir l'intérieur d'une batterie gel]
+
<br />[https://www.youtube.com/watch?v=d7pwE3u0kmo View the inside of a gel battery]
 
{| class="wikitable"
 
{| class="wikitable"
 
|+
 
|+
!Avantages
+
!Advantages
!Inconvénients
+
!Disadvantages
 
|-
 
|-
|Parfait maintien de l'homogénéité de l'electrolyte
+
|Maintains the homogeneity of the electrolyte perfectly.
|Courant de crête limité
+
|Limited peak current.
 
|-
 
|-
|Faible autodécharge (1-3% par mois)
+
|Low self-discharge (1-3% per month).
|Charge et décharge lente (courant de charge limité à 5-10% de la capacité)
+
|Slow charging and discharging. (charge current limited to 5-10% of capacity).
 
|-
 
|-
|Résiste bien aux chocs car tout est bien maintenu à l'intérieur
+
|Resists shocks and vibrations well because everything is well maintained inside .|Cannot withstand high temperatures (loss of electrolyte in the form of gas - permanent effect).
|Ne supporte pas la chaleur (perte de l'électrolyte sous forme de gaz - effet définitif)
 
 
|-
 
|-
|Bonne durée de vie
+
|Longer life span/shelf life.
|Ne supporte pas les surcharges (perte de l'électrolyte sous forme de gaz - effet définitif)
+
|Sensitive to overload (loss of electrolyte in the form of gas).
 
|-
 
|-
 
|
 
|
|Prix élevé
+
|High cost
 
|}
 
|}
 
|Step_Picture_00=Fonctionnement__entretien_et_r_g_n_ration_de_batteries_au_plomb_bat_anim_118.bmp
 
|Step_Picture_00=Fonctionnement__entretien_et_r_g_n_ration_de_batteries_au_plomb_bat_anim_118.bmp
Ligne 248 : Ligne 269 :
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Mécanismes de dégradation des batteries au plomb
+
|Step_Title=Mechanisms of degradation of Lead Acid Batteries
|Step_Content=*'''Stratification de l'électrolyte''': Dans une batterie à électrolyte liquide, si l'électrolyte n'est pas agité, l'acide sulfurique va couler vers le bas des bacs. Ainsi, la densité de l'électrolyte va lentement augmenter en bas des batteries, tandis qu'elle va diminuer en haut des batteries. Cette stratification de l'acide va provoquer une inhomogénité de la décharge des électrodes avec une corrosion accélérée en pied de batterie.
+
|Step_Content=*'''Stratification of the electrolyte''': In a wet electrolyte battery, if the electrolyte is not agitated, the sulfuric acid will flow down the trays./plates. Thus, the density of the electrolyte will slowly increase at the bottom of the batteries, while it will decrease at the top of the batteries. This stratification of the acid will result in non-homogeneous electrode discharge with accelerated corrosion at the bottom of the battery.
{{Idea|Comment l'éviter ?
+
 
*Utiliser régulièrement ses batteries. L'électrolyse de l'eau créé naturellement des bulles d'oxygène qui agite l'électrolyte.
+
{{Idea|How to avoid it ?
*Effectuer périodiquement une charge d'égalisation: Elle consiste à charger les batteries avec un faible courant, mais sous une tension supérieure à la tension généralement appliquée pour créer un bouillonnement plus important.
+
*Use batteries regularly --  The electrolysis of water creates bubbles of oxygen which agitate the electrolyte.
*Utiliser des batteries GEL ou AGM}}
+
*Periodically carry out an equalization charge -- This consists of charging the batteries with a low current, but with higher voltage than that generally applied to create greater bubbling.
 +
• Use gel or AGM batteries.}}
  
  
*'''Corrosion des électrodes positives:''' Les électrodes positives sont sensibles à la corrosion qui se produit au repos, mais surtout lors de la charge : le plomb de la grille se transforme en oxyde de plomb, peu conducteur. Si la corrosion devient trop importante, les matériaux actifs tombent peu à peu au fond des accumulateurs, et l'ensemble des électrodes se désagrège. La capacité de la batterie diminue et la résistance interne augmente jusqu'à rendre la batterie inutilisable.
+
*'''Corrosion of the positive electrodes''': The positive electrodes are sensitive to corrosion which occurs when not in use, but especially during charging, when the lead in the grid is transformed into lead oxide, which is not very conductive. If there is too much corrosion, the active materials gradually sink to the bottom of the accumulators, and electrodes disintegrate. The capacity of the battery decreases and the internal resistance increases until the battery becomes unusable.  
{{Idea|Comment la limiter ?
+
{{Idea|How to limit it?
*Éviter les surcharges: vérifier sur les fiches techniques que les courants et durées de charges ne sont pas trop importants
+
*Avoid overloads: check the data sheets so that the load currents and duration are not too high.
*Éviter les températures élevées: aérer ou isoler le local batterie, laisser un espace entre chaque batterie.}}<br />
+
*Avoid high temperatures: ventilate or insulate the battery room, leave a space between each battery.}}<br />
  
*'''Perte de la matière active''': Durant des cycles de charge et de décharge, les plaques positives et négatives subissent de fortes contraintes mécaniques (forts courants, champs magnétiques induits). Les plaques se désagrègent peu à peu et la matière active s’accumule au fond de la batterie. Cette "boue" peut provoquer des courts circuits entre deux plaques.
+
*'''Loss of active material''': During charge and discharge cycles, the positive and negative plates undergo strong mechanical stresses (high currents, induced magnetic fields). The plates gradually disintegrate and the active material accumulates at the bottom of the battery. This "mud" can cause short circuits between two plates.
{{Idea|Comment la limiter ?
+
{{Idea|How to avoid it ?
*Éviter les décharges profondes
+
*Avoid deep discharges.
*Éviter les décharges rapides: Si la batterie est déchargée très rapidement, les contraintes mécaniques n'ont pas le temps de s'accommoder et la désagrégation est plus rapide.
+
*Avoid rapid discharges: If the battery is discharged very quickly, the mechanical stresses do not have time to accommodate themselves and disintegration is faster.
*Choisir des batteries à électrodes épaisses ou tubulaires.}}
+
*Choose batteries with thick or tubular electrodes.}}
  
*'''Asséchement de l'électrolyte:''' Naturellement, l'eau contenue dans l'électrolyte s'évapore un peu. Les batteries VRLA favorise sa recondensation, ce qui réduit la nécessité d’appoint en eau distillée (contrairement aux batteries ouvertes). Mais, une fois la batterie chargée, un apport de courant amorce l'électrolyse de l’eau avec formation d’oxygène et d’hydrogène gazeux. Dans une batterie VRLA, au délà d'une certaine pression, des soupapes de sécurité laissent s'échapper l'eau de manière définitive. Ceci est problématique car l’appoint d’eau distillée n’est pas possible !
+
*'''Drying of the electrolyte:''' Naturally, the water contained in the electrolyte evaporates a little. Valve regulated lead acid (VRLA) batteries promote its recondensation, which reduces the need for additional distilled water (unlike open batteries). But, once the battery is charged, a supply of current initiates the electrolysis of the water with the formation of oxygen and hydrogen gas. In a VRLA battery, beyond a certain pressure, safety valves let the water escape permanently. This is problematic because topping up with distilled water is not possible.
{{Idea|Comment l'éviter ?
+
{{Idea|How to avoid it ?
*Éviter les surcharges: vérifier sur les fiches techniques que les courants et durées de charges ne sont pas trop importants
+
*Avoid overloads: check the data sheets to ensure that the load currents and durations are not too high.
*Éviter les températures élevées: aérer ou isoler le local batterie, laisser un espace entre chaque batterie.}}
+
*Avoid high temperatures: ventilate or insulate the battery room, leave space between each battery.}}
  
*'''Sulfatation:''' Durant la décharge, des cristaux de sulfate de plomb (PbSO4) se forment sur les électrodes positives et négatives. Si la batterie reste longtemps déchargée, ces cristaux de sulfate de plomb grossissent et durcissent de manière irréversible. Cela réduit la conductivité des électrodes, fait perdre en capacité à la batterie et peut provoquer des courts-circuits.
+
*'''Sulfation''': During discharge, crystals of lead sulfate (PbSO4) form on the positive and negative electrodes. If the battery remains discharged for a long time, these lead sulphate crystals grow and harden irreversibly. This reduces the conductivity of the electrodes, causes the battery to lose capacity and can cause short circuits.
{{Idea|Comment la limiter ?
+
{{Idea|How to limit it?
*Éviter les sous-charges prolongée: ne jamais stocker une batterie déchargée
+
*Avoid prolonged undercharging: never store a discharged battery.
*Éviter les charges incomplètes: charger vos batteries à 100% au moins 1x/semaine.}}  
+
*Avoid incomplete charges: charge your batteries to 100% at least once a week.}}  
  
'''Gel de l'électrolyte:''' Lorsqu'une batterie est déchargée, l'électrolyte est principalement constitué d'eau. Sous de basses températures, celle-ci peut geler et endommager irrémédiablement la batterie.  
+
'''Freezing of Electrolyte''': When a battery is discharged, the electrolyte is mostly water. At low temperatures, it can freeze and irreparably damage the battery.  
  
{{Idea|1=Comment l'éviter ?
+
{{Idea|1=How to avoid it?
*En voiture, éviter les trajets quotidien trop courts en hiver.
+
*Avoid too short daily journeys by car in winter.
*Dans les climats froids, augmenter la densité spécifique de l'électrolyte si batterie ouverte (acide/eau= 1,29-1,3 g/cm3)
+
*In cold climates, increase the specific gravity of the electrolyte if the battery is open (acid/water = 1.29-1.3 g/cm3).
*Passer à des batteries AGM ou Gel}}
+
*Switch to AGM or Gel batteries.}}
  
*'''Corrosion des bornes de la batterie :''' Suite à des projections d'acide, des vapeurs d'acide, ou simplement à de la corrosion galvanique (2 métaux différents mis en contact), il peut se former des dépôts d'oxyde de plomb sur les bornes de la batterie. Cela peut poser des problèmes de conductivité électrique.
+
''' Corrosion of the battery terminals''' : Following acid splashes, acid vapours, or simply galvanic corrosion (two metals brought into contact), lead oxide deposits may form on the battery terminals. This can cause electrical conductivity problems.
{{Idea|Comment l'éviter ?
+
{{Idea|How to avoid it?
*Graisser les connectiques avec de la vaseline ou une graisse anti-corrosion adaptée aux batteries
+
*Lubricate the connectors with petroleum jelly or an anti-corrosion grease suitable for batteries
*Brosser, nettoyer les bornes si des traces de corrosion s'installe.}}
+
*Brush and clean the terminals if traces of corrosion appear.}}
  
*'''Fusion des bornes de la batterie''': Si le connecteur est mal serré sur la borne, la résistance électrique de contact va augmenter. Au passage d'un courant élevé, les bornes peuvent fondre par effet Joule. Cela peut amener à des incendies !
+
*'''Fusion of the battery terminals''': If the connector is loose on the terminal, the electrical contact resistance will increase. When a high current passes, the terminals can melt by the Joule effect (the conversion of electric energy into heat energy by resistance in a circuit). This can lead to fires.
{{Idea|Comment l'éviter ?
+
{{Idea|How to avoid it ?
*Respecter les couples de serrage en N.m donnés par les fabricants de batteries.
+
*Comply with the tightening torques in N.m given by the battery manufacturers.
*Vérifier régulièrement le bon serrage surtout si les batteries sont soumises à des vibrations (voitures de golf, remorques...)}}<br />
+
*Regularly check the correct tightening, especially if the batteries are subject to vibrations (for example, golf cars, trailers, etc.).}}<br />
 
|Step_Picture_00=Fonctionnement__entretien_et_r_g_n_ration_de_batteries_au_plomb_Tableau_causes_d_gradation_batteries_plomb_goodyy.JPG
 
|Step_Picture_00=Fonctionnement__entretien_et_r_g_n_ration_de_batteries_au_plomb_Tableau_causes_d_gradation_batteries_plomb_goodyy.JPG
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Résumé des bonnes pratiques à adopter avec des batteries au plomb
+
|Step_Title=Summary of good practices to adopt with lead acid batteries
|Step_Content=*'''Matériel:''' Bien choisir sa batterie en fonction de l’usage recherché. <br />Ne jamais mélanger des batteries neuves et usagées. <br />Ne jamais mélanger des batteries de technologies différentes. <br />Installer correctement et solidement le câblage de votre parc batterie pour éviter les incendies. <br />Vérifier régulièrement les connectiques si celles-ci sont soumises à des vibrations.<br />
+
|Step_Content='''Equipment''': Choose your battery carefully according to the intended use. <br />Never mix new and used batteries. <br />Never mix batteries of different technologies. <br />Correctly and solidly install the wiring of your battery bank to avoid fires. <br />Regularly check the connectors if they are subject to vibrations.
  
 
<br />
 
<br />
  
*'''Détection et prévention des décharges profondes''': La durée de vie d’une batterie est en relation directe avec la profondeur de décharge DoD. Il est donc très important d’'''empêcher toute décharge à plus de 50% !''' <br />
+
*'''Detection and Prevention of Deep Discharge''': Battery life is directly related to DoD or depth of discharge. It is, therefore, very important to prevent any discharge over 50% !''' <br />
**<u>Comment connaitre le niveau de charge</u> (SoC)?
+
**<u>How to know the level of charge (SoC)?</u>  
***La mesure du voltage ne suffit pas. Trop de facteurs différents agissent sur la tension de batterie.
+
***Simply measuring the voltage does not suffice as several factors affect the battery voltage.
***Il faut utiliser un [https://www.victronenergy.fr/battery-monitors moniteur batterie]. Il calcule la tension mais aussi les courants de charge et de décharge. Cela permet de calculer l'état de charge en direct.
+
***A [https://www.victronenergy.fr/battery-monitors battery monitor] must be used. It calculates not only the voltage but also the charge and discharge currents, which allows the state of charge to be calculated in real time.
**<u>Comment éviter les décharges profondes</u> ?
+
**<u>How to avoid deep discharges?</u>  
***L’idée est de contrôler le niveau de charge (SoC) et de déconnecter les charges de consommation dès que celui-ci passe sous un niveau établi.
+
***The idea is to control the level of charge (SoC) and to disconnect the consumption loads as soon as they fall below a certain level.  
***Utiliser un protecteur de batterie/[https://www.victronenergy.fr/battery_protect/battery-protect Battery Protect] ou un régulateur de charge solaire paramétrable, pour les équipements en courant continu DC.
+
***Use a battery protector/[https://www.victronenergy.fr/battery_protect/battery-protect Battery Protect] or a configurable solar charge regulator, for direct current (DC) equipment.  
***Utiliser le relais à contact sec de votre moniteur batterie s'il en est équipé.
+
***Use the dry contact relay (voltage-free relay) of your battery monitor if it is equipped with one.  
***Paramétrer le seuil de basse tension batterie sur votre onduleur pour les équipements en courant alternatif AC (bien lire la notice).
+
***Set the low battery voltage threshold on your inverter for alternating current (AC) equipment (read the instructions carefully).
*'''Faire attention à la température''': Ce facteur a une influence très importante sur la durée de vie des batteries ! Il est très important de garder les batteries '''à des températures « fraiches »''' , environ 20°C.  
+
*'''Pay attention to the temperature: ''': This factor has a very important influence on the life of the batteries. It is very important to keep the batteries at “cool” temperatures, around 20°C.  
**<u>Local technique</u> : Choisissez toujours la pièce ou l’endroit le plus frais. Ne laissez jamais les batteries exposées au soleil direct. Si ce lieu est encore trop chaud, il faudra très sérieusement envisager une ventilation rafraichissante du local ou du container batterie.
+
**<u>Technical roome</u> : Always choose the coolest room or location. Never leave batteries exposed to direct sunlight. If the place is still too hot, one should consider cooling ventilation of the room or the battery container.  
**<u>Aération et ventilation</u> : Toujours garder de l’espace entre les batteries (environ 5 cm), ne pas les mettre les unes contre les autres. Si les batteries sont à l’intérieur d’un coffre à batterie ou dans une armoire, il doit y exister une circulation d’air.
+
**<u>Aeration and ventilation</u> : Always keep space between the batteries (about 5 cm), do not put them against each other. If the batteries are inside a battery box or in a cabinet, there must be air circulation.  
**<u>Compensation de température:</u> Lorsque la température dépasse les 30°C ou est inférieure à 10°C durant une longue période, il est nécessaire de modifier la tension de recharge.
+
**<u>Temperature compensation:</u> When the temperature exceeds 30°C or is lower than 10°C for a long time, it is necessary to change the charging voltage.
  
 
<br />
 
<br />
  
*'''Batterie non utilisée Autodécharge''': Quand une batterie n’est pas utilisée, elle se décharge lentement. Ce phénomène dépend du type de batterie et de la température.
+
Battery not in use Self-discharge: When a battery is not in use, it slowly discharges. This phenomenon depends on the type of battery and the temperature.
**Une batterie ouverte non utilisée doit '''rechargée tous les 4 mois''' à température ambiante (entre 10-25°C).
+
o An unused open battery must be recharged every four months at room temperature (between 10-25°C).  
**Une batterie ouverte non utilisée doit être maintenue chargée '''en permanence''' par des température inférieure à 0°C.
+
o An unused open battery must be kept permanently charged in temperatures below 0°C.  
**Les batteries étanches pourront être laissées jusqu’à 6 à 8 mois sans recharge par température ambiante.
+
o Sealed batteries can be left for up to 6 to 8 months without recharging at ambient temperature.  
**Quand un système contenant des batteries (camping car, voiture, etc) n’est pas utilisé pendant une longue période, '''débranchez les batteries''' pour éviter les courants de fuites.
+
o When a system containing batteries (RV, car, etc.) is not used for a long period, disconnect the batteries to avoid leakage currents.
  
 
<br />
 
<br />
  
*'''Tensions correctes de charge:''' Ne jamais recharger les batteries avec une tension supérieure à celle préconisée dans la fiche technique du fabriquant. Utiliser un chargeur ayant au moins 3 étapes de charge (Bulk, Absorption, Float).
+
*'''Correct charging voltages''': Never recharge the batteries with a voltage higher than that recommended in the manufacturer's data sheet. Use a charger with at least 3 charge stages (Bulk, Absorption, Float).
  
 
<br />
 
<br />
  
*'''Courant correct de charge / décharge :''' Il est préconisé de ne '''jamais charger ou recharger''' des batteries plomb '''à plus de 0,2C''', c'est-à-dire 20% de la capacité du parc batterie (ex: 20A pour un parc batterie de 100Ah).
+
*'''Correct charge/discharge current''': '''It is recommended '''never to charge or recharge''' lead batteries at '''more than 0.2C''', i.e. 20% of the capacity of the battery bank (ex: 20A for a battery bank of 100Ah).
{{Idea|1=Lors du dimensionnement d'une installation photovoltaïque, bien s'assurer que le courant de sortie max est inférieur à 20% de la capacité batterie. Soit: Imax (A) = Pmax (W) / Ubat (V) < 0,2C}} <br />  <br />
+
{{Idea|1=When sizing a photovoltaic installation, make sure that the maximum output current is less than 20% of the battery capacity. Let: Imax (A) = Pmax (W) / Ubat (V) < 0.2C}} <br />  <br />
  
 
<br />
 
<br />
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Désulfatation / Régénération de batteries au plomb
+
|Step_Title=Desulphation/Regeneration of lead acid batteries
|Step_Content=Durant la décharge, du sulfate de plomb (PbSO4) se forme sur les électrodes positives et négatives. Si la batterie reste déchargée, ce sulfate de plomb cristallise et durcit. Une fois cristallisé, il ne peut plus se transformer en acide sulfurique lors du chargement de la batterie. Cela fait chuter la capacité de la batterie: "elle ne tient plus la charge"
+
|Step_Content=During discharge, lead sulphate (PbSO4) forms on the positive and negative electrodes. If the battery remains discharged, this lead sulphate crystallizes and hardens. Once crystallized, it can no longer turn into sulfuric acid when charging the battery. This causes the battery capacity to drop: "it no longer holds a charge" it is a weak battery/it is a dead battery.
  
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
  
La '''régénération de batterie''' est un processus qui consiste à envoyer des impulsions électriques de forte intensité (300-400A) à une fréquence donnée, basée sur la fréquence de résonance propre de la batterie. Celle-ci est calculée automatiquement par la machine et évolue au cours du temps. Ces impulsions viennent briser la couche cristalline formée par le sulfate de plomb amorphe et permettent la redilution de celui-ci dans l'acide sulfurique.
+
'''Battery regeneration''' is a process of sending high-intensity electrical pulses (300-400A) at a given frequency, based on the battery's resonant frequency. This is calculated automatically by the machine and evolves over time. These impulses break down the crystalline layer formed by the amorphous lead sulphate deposited on the electrodes and convert it back to sulphuric acid. The plates are reconstituted and the battery returns to its original condition.
  
  
  
'''Taux de succès:''' La sulfatation n'étant pas le seul phénomène de dégradation d'une batterie, toutes ne pourront pas être régénérées par désulfatation.
+
'''Success rate''': Since sulphation is not the only phenomenon underlying battery degradation, not all of them can be regenerated by desulphation.
  
*Sur les batteries à électrodes tubulaires, le taux de succès est d'environ 90% (source: BeEnergy)
+
*For batteries with tubular electrodes, the success rate is around 90% (source: BeEnergy)
*Sur les batteries de démarrage, le taux de succès est d'environ 30%. (source: BeEnergy)
+
*For starter batteries, the success rate is around 30%. (source: BeEnergy)
  
  
'''Durée du procédé:''' Ce procédé peut durer de quelques heures pour une batterie de démarrage à plusieurs jours pour des batteries de traction.
+
'''Duration of the process''': This process can last from a few hours for a starter battery to several days for traction batteries.
  
  
[Recherches à poursuivre]
+
Research to follow (For Further Reading)
  
 
<br />
 
<br />
 
}}
 
}}
 
{{Notes
 
{{Notes
|Notes=Document rédigé par Guénolé Conrad avec l'aide de Loup Girier, Wiam Razi, Elliot Harant et Pascal Criquioche dans le cadre du projet Scholar Grid. Un projet à l'initiative de la [https://www.se.com/fr/fr/about-us/sustainability/foundation/ Fondation Schneider Electric] avec le support technique d'[http://www.energies-sans-frontieres.org/ Energie Sans Frontières], [https://www.atelier21.org Atelier 21] et du  [https://lowtechlab.org/fr Low-tech Lab]<br />
+
|Notes=Document by Guénolé Conrad with the help of Loup Girier, Wiam Razi, Elliot Harant and Pascal Criquioche within the framework of the Scholar Grid project. A project initiated by the [https://www.se.com/fr/fr/about-us/sustainability/foundation/ Schneider Electric Foundation] with the technical support of [http://www.energies-sans-frontieres.org/ Energie Sans Frontières], [https://www.atelier21.org Atelier 21] and the [https://lowtechlab.org/en Low-tech Lab]<br />
  
*[https://www.victronenergy.fr/upload/documents/Optimiser-la-vie-des-batteries-plomb-Le%C3%A7on-V02-Bis.pdf Document Victron Energy], Traduit de: ”Optimiser la vie des batteries plomb - Leçon V02 Bis.docx” de Margriet Leeftink, par Jacques Noël
+
*[https://www.victronenergy.fr/upload/documents/Optimiser-la-vie-des-batteries-plomb-Le%C3%A7on-V02-Bis.pdf Document Victron Energy], Translated from: “Optimizing the life of lead batteries - Lesson  V02 Bis.docx” by Margriet Leeftink, by Jacques Noël”
*Bon résumé sur l'[https://www.batterie-solaire.com/Installatation-des-batteries Installation des batteries au plomb], Site web "Batterie-solaire.com"
+
*Summary on the Installation of lead batteries: Website: Batterie-solaire.com
*Bon résumé sur l'[https://www.batterie-solaire.com/entretien-batteries Entretien des batteries au plomb], Site web "Batterie-solaire.com"
+
*Summary on the Maintenance of lead batteries:  Website: Batterie-solaire.com
*[https://librairie.ademe.fr/recherche-et-innovation/3524-etat-de-l-art-des-technologies-de-desulfatation-des-accumulateurs-au-plomb.html?search_query=2022&results=1384 Rapport] "Etat de l'Art des Technologies de Désulfatation des Accumulateurs à Plomb" de l'ADEME - 2011
+
*[https://librairie.ademe.fr/recherche-et-innovation/3524-etat-de-l-art-des-technologies-de-desulfatation-des-accumulateurs-au-plomb.html?search_query=2022&results=1384 Report] "State of the Art of Desulphation Technologies for Lead-Acid Accumulators" by ADEME - 2011
*[https://www.youtube.com/watch?v=ryqKYLWlubE Vidéo] "Batterie Liquide, AGM, GEL, que choisir?" de la chaîne Youtube de Guillaume Piton - La Watterie<br />
+
*[https://www.youtube.com/watch?v=ryqKYLWlubE Video] "Liquid battery, AGM, GEL, what to choose?" from the Youtube channel of Guillaume Piton - La Watterie<br />
 
}}
 
}}
 
{{PageLang
 
{{PageLang

Version actuelle datée du 30 mai 2023 à 10:56

Tutorial de avatarScholar Grid Project | Catégories : Habitat, Énergie

Batteries are essential and expensive elements in off-grid installations. However, their operation and maintenance are not well known/not well understood by the general public. This tutorial, therefore, has several objectives:

  • Present/Explain how a lead-acid battery works.
  • Present/Explain the different types of lead acid batteries.
  • Present/Explain the major causes of degradation of lead batteries.
  • Present/Explain the rules for the use and maintenance of lead batteries.
  • Introduce the process of desulfation (or regeneration) of lead batteries.

Licence : Attribution (CC BY)

Introduction

Batteries are often the most expensive and most fragile constituents of an electrical conversion system. Hence, it is important to take care of them through proper use and monitoring.


Lead acid batteries are very fragile. They are sensitive to overcharging, partial charging, deep discharges, excessively rapid charges, and to temperatures above 20°C. All these factors can lead to premature aging, mainly due to a combination of lack of technical knowledge, poorly- sized systems and erroneous use by a person. If one does not control these factors, the batteries will quickly be damaged.


The damage will result in reduced battery life and, in some cases, there could be irreparable deterioration of batteries. Batteries will last longer when used properly, and so their replacement will be less frequent. In the long run, one can make considerable savings. Another interesting aspect is that the conversion system will be more efficient if the batteries are in a good condition. The better the batteries’ condition, the more efficient the installation will be.


In this tutorial, we will learn how to properly use and maintain lead-acid batteries.

Étape 1 - Composition of a lead-acid battery

  • A lead battery is made up of 'a set of cells'. The nominal voltage of an accumulator/cell is approximately 2.1 V, and so a 12-V battery consists of six accumulator/cell mounted in series and connected by welded lead. (A series of cells connected in series, or parallel is called module) The cells are fitted/packed in a plastic container and sealed with a lid.
  • Each cell comprises pairs of 'positive and negative electrodes' (plates) connected in parallel, with a separator in between each pair.
  • The 'separators' are generally rectangular porous sheets, inserted between the positive plates and the negative plates, and have the following important characteristics:
    • they serve/act as perfect electrical insulators.
    • they are highly permeable to ions carrying electrical charges.
    • they have excellent resistance to sulfuric acid,
  • The electrodes are composed of a grid on which is deposited a porous active material: lead (Pb) on the negative electrode and lead dioxide (PbO2) on the positive electrode. The grid collects the current and also serves as a mechanical support for the active material.
  • The electrolyte is a dilute solution of sulfuric acid in which the electrodes are immersed. It can be in liquid, gel or absorbed form in fiberglass felts, depending on the type of battery.



Étape 2 - Operation of a lead acid battery

To understand the causes of battery failure, it is important to understand the chemical reactions at work inside it.


Reaction during discharge: During discharge, the following chemical reaction takes place:

PbO2 sol + Pb sol + 2 HSO4aq + 2 H+aq ⟶ 2 PbSO4 sol + 2 H2O liq

    • The positive (+) electrode which is lead dioxide converts into lead sulphate crystals.
    • The negative electrode (-) which is made of lead also changes into lead sulphate crystals.
    • The electrolyte bath in which the reactions take place is largely transformed into water (H2O).


  • Reaction during Charge : When charging, the reverse chemical reaction takes place:

2PbSO4 sol + 2 H2O liqPb sol + PbO2 sol + 2 HSO4aq + 2 H+aq.


    • Lead sulphate crystals dissolve/(are broken down into) lead dioxide which is deposited on the (+) electrode and lead which is deposited on the (-) electrode.
    • The electrolyte reverts to dilute sulfuric acid.





Étape 3 - The characteristic units of the batteries

The units of the batteries are indicated as abbreviations which are not always easy to understand. Here is a summary table of the units associated with the batteries :

Characteristic Definition Explanation
Capacity (Ah) The amount of current that a battery can store or release, usually specified in Ah for a given discharge rate. A 10 Ah battery can produce 5 Amperes (A) for 2 hours (h).
Tension (V) Battery voltage level. It must be compatible with the connected devices. Lead-acid batteries are made up of units delivering 2.1 Volts (V) and connecting these units in series makes it possible to reach the generally desired voltage. For example, six units connected in series deliver 12 V. To create 24 V or 48 V systems, 12 V batteries are, in turn, connected in series.
Energy (Wh) The product of multiplication of the capacity by the voltage. A 200Ah 24V battery will have an energy of 4800 Watts hour (Wh).
Discharge rate, Cxx Expressed as a unit of C10, C20or C100, it indicates the capacity of a battery according to its rate of discharge. 50Ah C20battery means a battery of 50Ah capacity with 20h discharge

C100battery: 90Ah (capacity of 90Ah with a discharge in 100h).

Cold Cracks Amps (CCA) This is the maximum extractable current from a battery over a short period when starting the engine, for example. CCA 420A 5 sec indication means the battery can deliver 420A for 5 sec.
SOC (State of Charge) State of charge of a battery, which indicates the amount of electricity remaining. SOC = 50 %: the battery’s charge is 50%.
DOD (Depth of Discharge) State of discharge of a battery, or the amount of electricity consumed. DOD + SOC = 100% .
Number of cycles For a battery, a cycle represents a discharge followed by a charge. The number of cycles of a battery depends on the depth of discharge or amount of electricity consumed. The higher the DOD, the lower the cycle life, the same battery can have.
  • 500 cycles at 80% DOD
  • 750 cycles at 50% DOD
  • 1800 cycles at 30% DOD


Étape 4 - Different Types of Batteries for Different Uses

There are several types of and technologies for lead batteries, each adapted to a particular use, environment and constraints. Understanding the differences is essential to choosing and maintaining your battery correctly. This part summarizes the main categories of lead acid batteries and their characteristics.


Never mix batteries of different types.

It is important to note that one should never mix batteries of different types. The following combinations are to be avoided:

  • Old and new batteries.
  • Different capacities.
  • Different battery types.
  • Different brands.
  • Different technologies or chemistry

Batteries according to their use :

  • Starter battery:

A starter battery is intended to provide high current for a very short time. It is designed to start an engine (for example a vehicle or a generator). Starter batteries are sometimes called "car battery", "truck battery" or "thin plate battery". View inside a starter battery .

Starter batteries are not made for cyclic use. They are designed only for high discharge currents of very short duration. Thus, they cannot be used in an electrical conversion system / photovoltaic installation. Even if it is tempting to use them because they are easily available at low cost, it will cause malfunctions finally.
  • Traction battery

The name of these batteries comes from their first use: powering the motor of electric vehicles such as forklifts. They are generally equipped with "thick or tubular plates" which allows them to withstand fairly deep discharges and have a long lifespan. They are well suited for use in solar photovoltaics.

The batteries OPzS (liquid electrolyte) and OPzV (gel electrolyte) have almost the same characteristics as traction batteries.


  • Stationary battery

These batteries are used in emergency power supplies, in particular for computer or telecommunication systems. They are designed so as to be constantly recharged and to be discharged only infrequently.


  • Solar battery / slow discharge

These batteries are intended for use in photovoltaic solar installations. They are designed to withstand a high number of cycles (since they will be discharged every night and recharged every morning), and their depth of discharge is generally good but can vary greatly from one model to another. Service batteries have almost the same characteristics as solar batteries.


View the inside a slow cycle/solar battery


Batteries according to their technology / electrolyte

  • Open battery

An open battery is a battery with liquid electrolyte equipped with plugs allowing to fill it. Open batteries are not watertight: the liquid inside evaporates little by little, so it is necessary to check its level regularly and top it up if necessary with distilled water.

Advantages Disadvantages
Repairable Maintenance required
Delivers current in cold temperatures ( Their CCA rating indicates the battery has sufficient power to crank an engine in very cold temperatures) Risk of non-homogeneity of the electrolyte if little used = premature aging
Withstands overloads and overheating (one can add liquid if it evaporates) Release of hydrogen and, therefore, risk of explosion if environment not ventilated
Low cost Not conducive to cold, risk of electrolyte freezing
Strong self-discharge (10-12% per month) if not used regularly.
Leaks possible if there is tilting or shaking/vibrations


  • Sealed, leak-proof liquid batteries

A sealed battery is a liquid electrolyte battery equipped with a system to prevent the evaporation of the water contained in the electrolyte, by gas recombination. These batteries do not require maintenance, and are often called VRLA for "Valve Regulated Lead-Acid batteries".

Advantages Disadvantages
Reduces explosive gas production, water loss and leakage. Does not allow maintenance or control.
Requires less maintenance. Imposes a perfectly regulated load according to the temperature to avoid gas losses by excessive pressure.


  • AGM batteries

AGM batteries are a type of sealed/VRLA battery, in which the electrolyte is a liquid but it is held in place in a fiberglass blotter, and hence its name: Absorbed Glass Material.
View the inside of an AGM battery

Advantages Disadvantages
Maintenance-free with minimal release of gas They do not perform well in hot conditions (loss of electrolyte in the form of gas at higher temperatures) A temperature above 49°C (120°F) is very dangerous for the battery life.
They maintain the electrolyte homogeneity well. They are sensitive to overcharging and high voltages (loss of electrolyte in the form of gas)
Withstand colder temperatures well because of their homogeneous electrolyte (Since the electrolyte is held in the glass mat separators, it won't expand when frozen like it will in a flooded battery) They have limited shelf-life (as the acid concentration inside is higher than in others, which leads to faster battery degradation).
Allows high peak currents (CCA) to pass
Shock-resistant (Vibration-resistant) (Because of the fibre glass mats are woven tightly and the plates are packed tightly, making them immune to vibrations)
Low self-discharge (1-3% per month)


  • Gel batteries

Gel batteries are a type of sealed battery / VRLA. In a gel battery, the electrolyte is gelled by adding silicate.
View the inside of a gel battery

Advantages Disadvantages
Maintains the homogeneity of the electrolyte perfectly. Limited peak current.
Low self-discharge (1-3% per month). Slow charging and discharging. (charge current limited to 5-10% of capacity).
Cannot withstand high temperatures (loss of electrolyte in the form of gas - permanent effect).
Longer life span/shelf life. Sensitive to overload (loss of electrolyte in the form of gas).
High cost



Étape 5 - Mechanisms of degradation of Lead Acid Batteries

  • Stratification of the electrolyte: In a wet electrolyte battery, if the electrolyte is not agitated, the sulfuric acid will flow down the trays./plates. Thus, the density of the electrolyte will slowly increase at the bottom of the batteries, while it will decrease at the top of the batteries. This stratification of the acid will result in non-homogeneous electrode discharge with accelerated corrosion at the bottom of the battery.
How to avoid it ?
  • Use batteries regularly -- The electrolysis of water creates bubbles of oxygen which agitate the electrolyte.
  • Periodically carry out an equalization charge -- This consists of charging the batteries with a low current, but with higher voltage than that generally applied to create greater bubbling.
• Use gel or AGM batteries.


  • Corrosion of the positive electrodes: The positive electrodes are sensitive to corrosion which occurs when not in use, but especially during charging, when the lead in the grid is transformed into lead oxide, which is not very conductive. If there is too much corrosion, the active materials gradually sink to the bottom of the accumulators, and electrodes disintegrate. The capacity of the battery decreases and the internal resistance increases until the battery becomes unusable.
How to limit it?
  • Avoid overloads: check the data sheets so that the load currents and duration are not too high.
  • Avoid high temperatures: ventilate or insulate the battery room, leave a space between each battery.

  • Loss of active material: During charge and discharge cycles, the positive and negative plates undergo strong mechanical stresses (high currents, induced magnetic fields). The plates gradually disintegrate and the active material accumulates at the bottom of the battery. This "mud" can cause short circuits between two plates.
How to avoid it ?
  • Avoid deep discharges.
  • Avoid rapid discharges: If the battery is discharged very quickly, the mechanical stresses do not have time to accommodate themselves and disintegration is faster.
  • Choose batteries with thick or tubular electrodes.
  • Drying of the electrolyte: Naturally, the water contained in the electrolyte evaporates a little. Valve regulated lead acid (VRLA) batteries promote its recondensation, which reduces the need for additional distilled water (unlike open batteries). But, once the battery is charged, a supply of current initiates the electrolysis of the water with the formation of oxygen and hydrogen gas. In a VRLA battery, beyond a certain pressure, safety valves let the water escape permanently. This is problematic because topping up with distilled water is not possible.
How to avoid it ?
  • Avoid overloads: check the data sheets to ensure that the load currents and durations are not too high.
  • Avoid high temperatures: ventilate or insulate the battery room, leave space between each battery.
  • Sulfation: During discharge, crystals of lead sulfate (PbSO4) form on the positive and negative electrodes. If the battery remains discharged for a long time, these lead sulphate crystals grow and harden irreversibly. This reduces the conductivity of the electrodes, causes the battery to lose capacity and can cause short circuits.
How to limit it?
  • Avoid prolonged undercharging: never store a discharged battery.
  • Avoid incomplete charges: charge your batteries to 100% at least once a week.

Freezing of Electrolyte: When a battery is discharged, the electrolyte is mostly water. At low temperatures, it can freeze and irreparably damage the battery.

How to avoid it?
  • Avoid too short daily journeys by car in winter.
  • In cold climates, increase the specific gravity of the electrolyte if the battery is open (acid/water = 1.29-1.3 g/cm3).
  • Switch to AGM or Gel batteries.

Corrosion of the battery terminals : Following acid splashes, acid vapours, or simply galvanic corrosion (two metals brought into contact), lead oxide deposits may form on the battery terminals. This can cause electrical conductivity problems.

How to avoid it?
  • Lubricate the connectors with petroleum jelly or an anti-corrosion grease suitable for batteries
  • Brush and clean the terminals if traces of corrosion appear.
  • Fusion of the battery terminals: If the connector is loose on the terminal, the electrical contact resistance will increase. When a high current passes, the terminals can melt by the Joule effect (the conversion of electric energy into heat energy by resistance in a circuit). This can lead to fires.
How to avoid it ?
  • Comply with the tightening torques in N.m given by the battery manufacturers.
  • Regularly check the correct tightening, especially if the batteries are subject to vibrations (for example, golf cars, trailers, etc.).




Étape 6 - Summary of good practices to adopt with lead acid batteries

Equipment: Choose your battery carefully according to the intended use.
Never mix new and used batteries.
Never mix batteries of different technologies.
Correctly and solidly install the wiring of your battery bank to avoid fires.
Regularly check the connectors if they are subject to vibrations.


  • Detection and Prevention of Deep Discharge: Battery life is directly related to DoD or depth of discharge. It is, therefore, very important to prevent any discharge over 50% !
    • How to know the level of charge (SoC)?
      • Simply measuring the voltage does not suffice as several factors affect the battery voltage.
      • A battery monitor must be used. It calculates not only the voltage but also the charge and discharge currents, which allows the state of charge to be calculated in real time.
    • How to avoid deep discharges?
      • The idea is to control the level of charge (SoC) and to disconnect the consumption loads as soon as they fall below a certain level.
      • Use a battery protector/Battery Protect or a configurable solar charge regulator, for direct current (DC) equipment.
      • Use the dry contact relay (voltage-free relay) of your battery monitor if it is equipped with one.
      • Set the low battery voltage threshold on your inverter for alternating current (AC) equipment (read the instructions carefully).
  • Pay attention to the temperature: : This factor has a very important influence on the life of the batteries. It is very important to keep the batteries at “cool” temperatures, around 20°C.
    • Technical roome : Always choose the coolest room or location. Never leave batteries exposed to direct sunlight. If the place is still too hot, one should consider cooling ventilation of the room or the battery container.
    • Aeration and ventilation : Always keep space between the batteries (about 5 cm), do not put them against each other. If the batteries are inside a battery box or in a cabinet, there must be air circulation.
    • Temperature compensation: When the temperature exceeds 30°C or is lower than 10°C for a long time, it is necessary to change the charging voltage.


Battery not in use – Self-discharge: When a battery is not in use, it slowly discharges. This phenomenon depends on the type of battery and the temperature. o An unused open battery must be recharged every four months at room temperature (between 10-25°C). o An unused open battery must be kept permanently charged in temperatures below 0°C. o Sealed batteries can be left for up to 6 to 8 months without recharging at ambient temperature. o When a system containing batteries (RV, car, etc.) is not used for a long period, disconnect the batteries to avoid leakage currents.


  • Correct charging voltages: Never recharge the batteries with a voltage higher than that recommended in the manufacturer's data sheet. Use a charger with at least 3 charge stages (Bulk, Absorption, Float).


  • Correct charge/discharge current: It is recommended never to charge or recharge lead batteries at more than 0.2C, i.e. 20% of the capacity of the battery bank (ex: 20A for a battery bank of 100Ah).
When sizing a photovoltaic installation, make sure that the maximum output current is less than 20% of the battery capacity. Let: Imax (A) = Pmax (W) / Ubat (V) < 0.2C



Étape 7 - Desulphation/Regeneration of lead acid batteries

During discharge, lead sulphate (PbSO4) forms on the positive and negative electrodes. If the battery remains discharged, this lead sulphate crystallizes and hardens. Once crystallized, it can no longer turn into sulfuric acid when charging the battery. This causes the battery capacity to drop: "it no longer holds a charge" it is a weak battery/it is a dead battery.


Battery regeneration is a process of sending high-intensity electrical pulses (300-400A) at a given frequency, based on the battery's resonant frequency. This is calculated automatically by the machine and evolves over time. These impulses break down the crystalline layer formed by the amorphous lead sulphate deposited on the electrodes and convert it back to sulphuric acid. The plates are reconstituted and the battery returns to its original condition.


Success rate: Since sulphation is not the only phenomenon underlying battery degradation, not all of them can be regenerated by desulphation.

  • For batteries with tubular electrodes, the success rate is around 90% (source: BeEnergy)
  • For starter batteries, the success rate is around 30%. (source: BeEnergy)


Duration of the process: This process can last from a few hours for a starter battery to several days for traction batteries.


Research to follow (For Further Reading)


Notes et références

Document by Guénolé Conrad with the help of Loup Girier, Wiam Razi, Elliot Harant and Pascal Criquioche within the framework of the Scholar Grid project. A project initiated by the Schneider Electric Foundation with the technical support of Energie Sans Frontières, Atelier 21 and the Low-tech Lab

  • Document Victron Energy, Translated from: “Optimizing the life of lead batteries - Lesson V02 Bis.docx” by Margriet Leeftink, by Jacques Noël”
  • Summary on the Installation of lead batteries: Website: Batterie-solaire.com
  • Summary on the Maintenance of lead batteries: Website: Batterie-solaire.com
  • Report "State of the Art of Desulphation Technologies for Lead-Acid Accumulators" by ADEME - 2011
  • Video "Liquid battery, AGM, GEL, what to choose?" from the Youtube channel of Guillaume Piton - La Watterie

Commentaires

Published