Difference between revisions of "Bélier hydraulique/en"

(Page créée avec « Ram pump »)
 
(Mise à jour pour être en accord avec la nouvelle version de la source de la page)
 
(133 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
|Main_Picture=Pompe-belier-hydrolique_Pompe_b_lier.jpg
 
|Main_Picture=Pompe-belier-hydrolique_Pompe_b_lier.jpg
 
|Licences=Attribution (CC BY)
 
|Licences=Attribution (CC BY)
|Description=Ce tutoriel a pour objectif de faciliter la compréhension, le dimensionnement, la fabrication et l'installation d'un système d'élévation d'eau appelé "Bélier hydraulique". Cette technologie a été documenté (sur la base du tuto de Basile Sanséau) lors d'une escale du Nomade des Mers aux Philippines, sur l'île de Negros. L'ONG "Alternative Indigenous Development Foundation (AIFDI)", basée dans la ville de Bacolod depuis 1991, aide plus de 160 communautés rurales à répondre à leurs besoins en eau grâce à l'installation de béliers hydrauliques un peu partout dans l'archipel.
+
|Description=The purpose of this tutorial is to facilitate the understanding, design, manufacture and installation of a water elevation system called "Ram pump". This technology was documented during a stopover of the Sea Nomad in the Philippines, on the island of Negros. The NGO "Alternative Indigenous Development Foundation (AIFDI)", based in the city of Bacolod since 1991, helps more than 160 rural communities meet their water needs by installing hydraulic rams throughout the archipelago.
Le bélier présenté dans ce tutoriel est une version différente de celle utilisée par l'AIFDI car plus accessible.
+
The ram pump presented in this tutorial is a different version from the one used by the AIFDI because it is more accessible.
 
|Area=Water
 
|Area=Water
 
|Type=Tutorial
 
|Type=Tutorial
Line 17: Line 17:
 
}}
 
}}
 
{{Introduction
 
{{Introduction
|Introduction=Ce tutoriel a été initié par [[Utilisateur:Basile Sanséau|http://lowtechlab.org/wiki/Utilisateur:Basile_Sans%C3%A9au]]
+
|Introduction=This tutorial was initiated by [[User:Basile Sanséau|http://lowtechlab.org/wiki/Utilisateur:Basile_Sans%C3%A9au]]
  
Le système du bélier hydraulique a été inventé en 1797  par  Joseph-Michel Montgolfier, celui qui construisit la première montgolfière en 1782 avec son frère, Jacques-Étienne. Il fut tout de suite très critiqué par ses contemporains qui l’associent aux théories du mouvement perpétuel, alors considérées comme des hérésies.
+
The hydraulic ram system was invented in 1797 by Joseph-Michel Montgolfier, the man who built the first hot air balloon in 1782 with his brother, Jacques-Étienne. He was immediately criticized by his contemporaries who associated him with the theories of perpetual movement, which were considered heresies at the time.
  
Il faut attendre 1857 pour qu’un brevet soit déposé par Ernest Sylvain Bollée qui améliore et concrétise l’invention de Montgolfier.
+
It was not until 1857 that a patent was filed by Ernest Sylvain Bollée, which improved and made Montgolfier's invention a reality.
  
Dès lors beaucoup utilisé dans les campagnes françaises et européennes, il est maintenant implanté en Amérique et en Afrique dans des régions pour lesquelles l'approvisionnement en combustible est difficile ou onéreux.
+
Since then, it has been widely used in the French and European countryside, and is now established in America and Africa in regions where fuel supplies are difficult or expensive.
 
<br />
 
<br />
  
 
==A quoi sert un bélier hydraulique?==
 
==A quoi sert un bélier hydraulique?==
Le bélier hydraulique est un système d’élévation d’eau dont le fonctionnement dépend uniquement de la force motrice de l'eau, sans aucune autre intervention extérieure. Concrètement cela permet de pomper l’eau d’une source (rivière, lac, ruisseau) et de l’utiliser plus haut pour irriguer des cultures, abreuver des bêtes ou pour toute autre utilisation domestique.
 
  
Le bélier hydraulique présente plusieurs avantages :
+
The hydraulic ram pump is a water elevation system whose operation depends solely on the driving force of the water, without any other external intervention. In concrete terms, this makes possible to pump water from a source (river, lake, stream) and use it higher to irrigate crops, water livestock or for any other domestic use.
  
*Il est relativement peu coûteux
+
The ram pump has several advantages:
*Il fonctionne de façon entièrement automatique, sans électricité, sur une longue durée, certains béliers fonctionnant depuis plusieurs dizaines d'années
+
 
*Il ne nécessite aucun graissage, aucun entretien autre que les soins de propreté
+
*It is relatively inexpensive
*Les réparations sont peu fréquentes, nécessitées seulement par l'usure inévitable des pièces mobiles
+
*It operates fully automatically, without electricity, over a long period of time, some rams have been operating for several decades
*Il est déclinable en pratiquement toutes les tailles pour s’adapter aux débits et aux hauteurs voulues
+
*It requires no lubrication, no maintenance other than cleanliness care
 +
*Repairs are infrequent, only necessary due to the inevitable wear and tear of moving parts
 +
*It can be adapted to almost any size to suit the desired flow rates and heights
 
}}
 
}}
 
{{TutoVideo
 
{{TutoVideo
Line 43: Line 44:
 
{{Materials
 
{{Materials
 
|Step_Picture_00=Pompe-belier-hydrolique_image6.jpg
 
|Step_Picture_00=Pompe-belier-hydrolique_image6.jpg
|Material='''Ne pas utiliser de matière plastique pour le bélier, que ce soit vannes ou clapets, car ceux ci vont d'user très rapidement en fonctionnement.'''
+
|Material='''Do not use plastic material for the ram, whether valves or flaps, as they will wear out very quickly during operation..'''
 
 
{{Info|Ceci est un exemple pour le cas d'un bélier dimensionné en 26/34, il est donc à adapter selon les résultats du dimensionnement (Etape 2}}
 
  
'''A acheter:'''
+
{{Info|This is an example for the case of a ram pump dimensioned in 26/34mm, but it has to be adapted according to the results of the dimensioning (Step 2}}
  
-vanne en 26/34
+
'''To buy:'''
  
-1 coude en 26/34
+
-vanne of 26/34mm
  
-3 mamelons mâles en 26/34
+
-1 elbow of 26/34
  
-1 Té en 26/34
+
-3 male plumbing nipples in 26/34
  
-1 crépine en 26/34 ou un clapet anti-retour intérieur plastique (voir étape 5)
+
-1 Tee of 26/34
  
-1 clapet anti-retour en 26/34 avec intérieur  inox/laiton
+
-1 strainer in 26/34 or a plastic check valve inside (see step 5)
  
-2 vannes en 20/27 ou 1 vannes avec robinet de vidange
+
-1 check valve in 26/34 with stainless steel/brass interior
  
-1 croix en 20/27
+
-2 valves in 20/27 or 1 valve with drain valve
  
-1 réduction 26/34 vers 20/27
+
-1 cross of 20/27
  
-1 ou 2 rouleaux de téflon pour l'étanchéité de tout l'assemblage
+
-1 reduction from 26/34 to 20/27
  
-Du frein filet pour la fixation de la tige filetée
+
-1 or 2 teflon rollers for sealing the entire assembly
  
-4 tiges avec écrous papillons
+
-Thread lock for fixing the threaded rod
  
-une dizaine de rondelles de diamètre intérieur 6mm
+
-4 rods with wing nuts
  
-2 écrous pour tige filetée M5
+
- a dozen washers with an internal diameter of 6mm
  
 +
-2 nuts for M5 threaded rod
  
'''A récupérer:'''
+
'''To be recovered:'''
  
-1 extincteur 7 ou 9 litres
+
-1 extinguisher of 7 or 9 litres
  
-1 chambre à air ou autre caoutchouc  pour faire un joint
+
-1 inner tube or other rubber to make a seal
  
-plusieurs clous
+
- Nails
  
-1 planche en bois
+
- 1 wooden board
  
-fer plat de largeur 20 ou 30 mm, environ 60 cm
+
-flat iron 20 or 30 mm wide, about 60 cm
  
-un chalumeau (selon étape 5)
+
-a torch (according to step 5)
|Tools=- une pince multiprise
+
|Tools=- a plier
  
- une pince à griffe pour ouvrir la crépine
+
- a claw to open the strainer
  
- des ciseaux
+
- Scissors
  
- un marteau
+
- Hammer
  
-un foret (ici 6, 7)
+
- -a drill bit (here 6, 7mm)
  
- un taraud ( ici M5)
+
- a tap ( here M5)
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Comment marche un bélier hydraulique?
+
|Step_Title=How does a ram pump work?
|Step_Content=#À l'amorçage, l'eau qui s'engouffre dans la canalisation d'arrivée s'écoule dans le déversoir à travers la soupape primaire.
+
|Step_Content=#When priming, water flowing into the inlet line flows into the weir through the primary valve.
#L'accélération de l'eau provoque la brusque fermeture de la soupape primaire.
+
#The acceleration of the water causes the primary valve to close suddenly.
#Freinée brutalement, la colonne d'eau génère une surpression dans le corps de pompe (coup de bélier), qui ouvre le clapet interne.
+
#The water column is suddenly braked and generates an overpressure in the pump casing (water hammer), which opens the internal valve.
#Sous l'effet de cette surpression, l'eau s'écoule dans le ballon (et le conduit de refoulement), comprimant le volume d'air jusqu'à équilibrage des pressions.
+
#Under the effect of this overpressure, water flows into the balloon (and the discharge duct), compressing the air volume until the pressures are balanced.
#L'inversion des pressions referme le clapet interne.
+
#The pressure reversal closes the internal valve.
#L'eau emprisonnée sous pression dans le ballon se vide dans la canalisation de refoulement jusqu'à équilibrage des pressions (déterminée par la hauteur du conduit).
+
#The water trapped under pressure in the balloon empties into the discharge line until the pressures are balanced (determined by the height of the pipe).
#La fermeture du clapet interne ayant fait chuter la pression, la soupape primaire s'ouvre à nouveau. Un nouveau cycle commence…
+
#The closing of the internal valve has caused the pressure to drop, so the primary valve opens again. A new cycle begins....
 
 
  
Sans accident, ce processus se renouvelle perpétuellement, tant qu'il est alimenté en eau.
+
Without accident, this process is perpetually renewed as long as it is supplied with water.
  
[https://www.youtube.com/watch?v=hsCaMW7L2yI Voir des explications en vidéo]
+
[https://www.youtube.com/watch?v=hsCaMW7L2yI Video explanations]
 
|Step_Picture_00=Pompe-belier-hydrolique_Capture.PNG
 
|Step_Picture_00=Pompe-belier-hydrolique_Capture.PNG
 +
|Step_Picture_01=B_lier_hydraulique_cilindro_hidraulico.pdf
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Evaluer un site et dimensionner le bélier
+
|Step_Title=Evaluate a site and size the ram pump
|Step_Content=Tout d’abord il faut trouver de l’eau en surface qui coule continuellement sur une pente suffisamment vive (de l’ordre de 10% minimum). Si il s’agit d’un barrage ou d’un lac, s’assurer qu’il existe des positions en contrebas.
+
|Step_Content=First of all, it is necessary to find surface water that continuously flows on a sufficiently steep slope (about 10% minimum). If it's a dam or lake, make sure that there are positions below.
 
 
Pour bien connaitre un site, il faut ensuite estimer 4 paramètres (voir schéma) :
 
 
 
*'''q''' le débit de la source
 
*'''H''' la hauteur d’élévation
 
*'''L''' la longueur de la conduite motrice
 
*'''h''' la hauteur de chute
 
 
 
Pour le débit de la source, une grande précision n’est pas nécessaire il s’agit seulement d’une indication, néanmoins indispensable au bon dimensionnement du système. Pour calculer un débit plusieurs techniques existent, à choisir selon le temps disponible, le matériel disponible ou l’envie (voir ''[http://www.fao.org/tempref/FI/CDrom/FAO_Training/FAO_Training/General/x6705f/x6705f03.htm Estimation du débit d’eau] )''{{Info|Attention le débit d’un cours d’eau peut énormément varier selon les saisons, il peut donc être pertinent d’établir un débit maximum et minimum sur l’année.}}
 
  
 +
To evaluate a site, 4 parameters have to be estimated (as shown on the scheme) :
  
La hauteur d’élévation correspond à la différence de hauteur entre le bélier et le réservoir d’arrivée de l’eau. Concrètement il suffit de décider de l’endroit voulu pour l’arrivée d’eau et de mesurer les dénivelés entre ce point et le cours d’eau (en moyenne). Cette mesure est encore une fois indicative et sera affinée plus tard. Pour les mesures de dénivelés le site https://www.geoportail.gouv.fr/carte est assez fiable et précis. Il faut simplement  placer les points GPS sur la carte et effectuer un profil asymétrique. Cela correspond à une courbe montrant l’altitude (en m) en fonction de la distance (en m).
+
*'''q''' water flow
 +
*'''H''' lift height
 +
*'''L''' driving line lenght
 +
*'''h''' fall height
  
 +
Concerning the water flow, it it not necessary to be really precise, an average value would be enough to size the system. Several techniques are available, depending on your material and time : see ''[http://www.fao.org/tempref/FI/CDrom/FAO_Training/FAO_Training/General/x6705f/x6705f03.htm Water flow estimation]"
 +
{{Info|The water flow can vary a lot depending on the seasons, so it could be relevant to establish a maximal and minimum flow throughout the year.}}
  
La longueur de la conduite motrice et la hauteur de chute sont directement reliées à la pente de la rivière ou à la pente avale du lac (si c’est un lac). Il est la aussi intéressant d’établir un profil asymétrique afin de se rendre compte des distances et des dénivelés.
+
The lift height corresponds to the height difference between the pump height and the water reservoir. Concretely you should decide where you want the water to arrive, and measure the height difference between this point and the water source (in average). This measure will be precised later in the process. Slope measuring can be done with this website https://www.geoportail.gouv.fr/carte :
 +
Place GPS coordinates on the map, and use the function "asymetric profile".  This correspond to a curve showing the elevation depending on the distance (in m).
  
Une fois que les paramètres du site sont mieux connus, il va falloir dimensionner le bélier pour avoir le débit voulu à l’arrivée et un coût minimal d’installation (plus le bélier est petit moins il coûte cher!).
+
The driving line lenght and the fall height are directly related to the river or lake slope. In this case as well, it would be interesting to establish an asymetric profile in order to take distances and elevation gradients into account.
  
 +
Once the parameters of the site are identified, we will size the pump in order to retrieve the needed flow and a minimal installation coast (the smaller the pump is, the cheaper it will be).
  
'''Trouver L, H et h''':
+
'''Determine L, H and h''':
  
Formule générale:    q=((h*Q)/(h + H))0.70
+
General Formula:   q=((h*Q)/(h + H))0.70
  
Ou 0.70 est le rendement de la pompe et Q le débit d’arrivée
+
Where 0.70 is the pump efficiency and Q the arrival flow.
  
En pratique il faut:
+
Concretely, you will need:
  
 
*H/10<h<H/2
 
*H/10<h<H/2
Line 153: Line 152:
 
*3H <L<15H
 
*3H <L<15H
  
 +
You can also use a fall diagram as shown on the picture to determine H and h.
  
On peut aussi s’aider d’un Diagramme de chute comme celui proposé ci-contre pour déterminer H et h.
+
'''Sizing of the pump:'''
 
 
 
 
'''Dimensionner la pompe:'''
 
  
Pour dimensionner la pompe en elle même il faut choisir le débit voulu en arrivée selon les besoins. Une des manières les plus pratiques est d’utiliser le tableau ci-contre qui donne la taille finale de tuyauterie en fonction du débit de la source, du rapport d’élévation (h/H) et du débit final.
+
To size the pump itself, you have to chose the needed arrival flow. One of the easiest ways to do that is to use the provided table, that gives the final pipe size according to the source flow, the elevation ratio h/H and the final flow.
  
Celui-ci permet de procéder comme suis:
+
Using the table, you can proceed as follows:
  
-choisir le débit de sorti voulu correspondant aux besoins en eau
+
- Choose the final flow, corresponding to you water needs
  
-trouver la case correspondante en fonction des rapports d'élévations possibles avec votre terrain
+
- Find the corresponding number in the table according to the elevation ratios of your site
  
-ne pas hésiter à surdimensionner en cas de doute
+
- Do not hesitate to oversize the system in case of doubt
  
-vérifier que le débit de votre cours d'eau est bien supérieur à celui indiqué dans la ligne choisie
+
- Verify that you water flow is higher than indicated in the table
  
-lire sur la même ligne les dimensions du bélier pertinente avec votre configuration
+
- On the same table line, you can read the relevant pump sizing for you situation
  
On obtient donc le diamètre D du tuyau de batterie (ou conduite motrice) qui est le même pour tous les composants de la pompe.
+
You obtain the battery pipe (or driving line) diameter D, which is the same for all other components of the pump.
  
''ex: 26x34 correspond à un diamètre intérieur de 26mm et un diamètre extérieur de 34mm''{{Info|Attention les dimensions sont donnés en mm mais peuvent être exprimés en pouces sur le marché.}}<br />
+
''For example: 26x34 to an internal diamter of 26mm and an external diameter of 34mm''{{Info|Be careful because the dimensions given are in milimeters but can sometimes be indicated in inches.}}<br />
 
{| class="wikitable"
 
{| class="wikitable"
|Millimètres (mm)
+
|Millimeters (mm)
|Pouces ou inch
+
|Inches
 
|-
 
|-
 
|15x21
 
|15x21
Line 199: Line 196:
 
|}
 
|}
  
 
+
All pump components will therefore be of the same dimension, except for the outlet pipe (or delivery pipe) whose diameter D' will be half of the driving line D. D'=D/2
L’ensemble de la pompe est donc de même dimension sauf le tuyau de sortie (ou conduite de refoulement) qui est de telle sorte que son diamètre D’ soit égal à la moitié du diamètre du tuyau de batterie : D’=D/2
 
 
|Step_Picture_00=Pompe-belier-hydrolique_sch_ma_L_h_H.PNG
 
|Step_Picture_00=Pompe-belier-hydrolique_sch_ma_L_h_H.PNG
 
|Step_Picture_01=Pompe-belier-hydrolique_Table_des_chutes.PNG
 
|Step_Picture_01=Pompe-belier-hydrolique_Table_des_chutes.PNG
Line 208: Line 204:
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Choisir son type de montage
+
|Step_Title=Choose your type of installation
|Step_Content=Lors de la fabrication d'une pompe bélier, il existe 2 configurations qui jouent sur le rendement du bélier. Ces différents montages concernent les positions du clapet de choc, de la cloche à air et du clapet anti-retour.
+
|Step_Content=When building a ram pump, 2 different configurations exist that will play a role on the pump efficiency. They concern positions of the primary valve, the internal valve and the air chamber.
  
<u>'''Montage en répartition (voir image 1):'''</u>
+
<u>'''Repartition assembly (image 1):'''</u>
  
Il s'agit d'un montage ou le clapet de choc est située avant la cloche à air, cela peut donner au bélier une allure plate comme sur la photo de présentation. Selon certaine source ce montage aurait 20% de rendement en plus par rapport à l'autre mais cela reste à prouver.
+
In this case, the primary valve is before the air chamber. This position can make the pump look rather flat, as shown in the first picture of this page. Some sources state that this system can reach 20% higher performance than the other, but we have not been able to prove it yet.
  
'''<u>Montage en butée (voir image 2):</u>'''
+
'''<u>In butting assembly (image 2):</u>'''
  
C'est celui présenté dans ce tuto, il est aussi beaucoup utilisé et donne au bélier une allure verticale.  
+
We will describe this system in the tutorial, as it is more widely used. The pump will look more vertical.
  
{{Info|Il est difficile de choisir entre les deux car les avis sont très partagés sur le sujet.}}<br />
+
{{Info|It is difficult to choose between the two systems, because many different opinions can be found on this subject.}}<br />
 
|Step_Picture_00=Pompe-belier-hydrolique_xUzrUg04GUZPxYPOMmM2yPs4-2w.jpg
 
|Step_Picture_00=Pompe-belier-hydrolique_xUzrUg04GUZPxYPOMmM2yPs4-2w.jpg
 
|Step_Picture_01=Pompe-belier-hydrolique_1aQH6Ymk9cC77591OqMGlCA0cWI.jpg
 
|Step_Picture_01=Pompe-belier-hydrolique_1aQH6Ymk9cC77591OqMGlCA0cWI.jpg
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Cloche à air
+
|Step_Title=Air chamber
|Step_Content=Pour démonter l’extincteur il faudra dévisser l'embout à l'aide d'une clef multiprise puis sortir la cartouche de CO2 contenue à l'
+
|Step_Content=To disassemble the extinguisher, you should unscrew the mouthpiece with a wrench and take out the CO2 cartridge it contains.
  
il faut ensuite retirer de la bombone la lance ainsi qu'un tube plastique.
+
Then, take out the plastic pipe and the lance.
  
La sortie est normalisé 20x27 ce qui permettra le raccord par vissage avec le corps du bélier.
+
The outer part is normalised 20x27 and will be screwed to the pump.
  
Pour obtenir une cloche à air en état de fonctionner il reste à vider la poudre et à laver minutieusement l'intérieur.  
+
To obtain a functional air chamber, you should also empty it from the powder and clean the inside of the extinguisher.
  
Le trou de lance doit être bouché par quelque chose qui résiste à la pression! Trouver un bouchon voir souder une pièce ronde dessus peut être une solution.  
+
The lance hole should be stuck with something that resists pressure ! If you don' find a lid, you can weld a round metallic part on it.
  
Souder une pièce ronde ou trouver un bouchon pour fermer le trou de la lance. Il faut que ça puisse tenir la pression.
+
-
  
{{Idea|Si aucun extincteur n'est à portée de main il est possible de fabriquer une cloche à aire à l'aide d'un tube bouché à une extrémité et d'un raccord, les deux en PVC pression. La liaison entre le raccord PVC et un pas de tuyauterie standard se fait par une réduction filetée plus difficile à trouver dans le commerce (voir photo).}}<br />
+
{{Idea|If you don't have an extinguisher, it is possible to build an air chamber with a tube stuck at both ends and a PVC fitting. The linkage between the fitting and a standard pipe end is done thanks to a threaded reduction, more difficul to find on the market (see photo) }}<br />
 
|Step_Picture_00=Pompe-belier-hydrolique_ouverture_extincteur.png
 
|Step_Picture_00=Pompe-belier-hydrolique_ouverture_extincteur.png
 
|Step_Picture_01=Pompe-belier-hydrolique_zoVIu2n-CRXjlY6SD21nyRATmCU.jpg
 
|Step_Picture_01=Pompe-belier-hydrolique_zoVIu2n-CRXjlY6SD21nyRATmCU.jpg
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Clapet de choc
+
|Step_Title=Primary valve (or impact valve)
|Step_Content={{Info|Rappel: Il s'agit toujours d'un exemple pour un dimensionnement en 26/34, à adapter}}
+
|Step_Content={{Info|We remind you that this tutorial is an example for a 26/34 sizing, and needs to be adapted to you particular situation.}}
 
 
 
 
'''<u>Première technique à l'aide d'une crépine (image 1):</u>'''
 
  
''Cette technique est la plus robuste mécaniquement mais présente plus de difficulté lors de la construction.''
+
'''<u>First technique using a strainer (image 1):</u>'''
  
Il faut d'abord démonter la crépine à l'aide d'une pince à griffe.
+
''This version is the sturdiest, but will be a bit harder to build''
  
Une fois le clapet extrait, le donner à un tourneur dans un atelier pour qu'il perce au centre avec un foret de 4mm, sur 7 à 10 mm de profondeur.  
+
Firstly, disassemble the strainer using a claw clamp.
  
Tarauder à 5mm.
+
One the valve is recovered, drill a hole is the center with a 4mm drill. You might ask a turner in his workshop.
  
Percer avec foret de 6 ou 7 mm au centre du haut de la crépine
+
Tap at 5mm.
  
Insérer la tige avec un peu de frein filet dans le trou de 5 mm.  
+
Drill a 6 or 7 mm hole at the top center of the strainer.
  
[https://www.youtube.com/watch?v=HZNX5r4G-cs]Je vous conseille de regarder ceci : https://www.youtube.com/watch?v=HZNX5r4G-cs
+
Insert the rod in the 5mm hole, with a bit of thread lock.
  
 +
[https://www.youtube.com/watch?v=HZNX5r4G-cs]Watching this video will help you to understand the strain disassembly : https://www.youtube.com/watch?v=HZNX5r4G-cs
  
'''<u>Deuxième technique à l'aide d'un clapet anti-retour (image 3):</u>'''
+
'''<u>Second technique using a non-return valve(image 3):</u>'''
  
''Cette technique est moins solide mais plus accessible car ce type de clapet  en plastique se trouve dans tous les magasins en france.''
+
''This technique is less sturdy but more accessible because this kind of valve in plastic can be found in most shops.''
  
Pour ouvrir le clapet anti-retour:
+
To open the anti-return valve:
  
-placer des raccords mâles de chaque côté pour éviter de l'abîmer pendant la manipulation
+
-place male fittings on each side on the valve to avoid damaging it during the operation
  
- Distinguer une ligne (très fine) séparant les deux partie du clapet
+
-Distinguish a very thin line that separates two parts of the valve
  
- Chauffer à l'aide d'un  chalumeau au niveau de cette ligne pour faire fondre la colle à l'intérieur (ne pas trop chauffer non plus).
+
-Heat at the level of this line using a blowtorch, in order to melt the glue on the inside (be careful not to heat to much).
  
- Dévisser la clapet (à l'aide d'une pince à griffe et d 'un étau par exemple)
+
-Unscrew the valve (using a claw clamp and a vice for example)
  
Il suffit ensuite d'enlever le clapet en plastique contenu à l'intérieur et de le remplacer par une rondelle, des écrous et une tige filetée comme sur la quatrième image.
+
Then, remove the plastic flap inside and replace it by a washer, nuts and a threaded rod. (as shown on the 4th image).
  
<br />{{Warning|Attention, pour les deux techniques, donner un soin tout particulier au centrage de la tige sans quoi elle risquerait de se coincer, bloquant ainsi le fonctionnement de la pompe.}}<br />
+
<br />{{Warning|For both techniques, it is really important to put the threaded rod at the center of the system, otherwise it would get stuck and block the whole system.}}<br />
 
|Step_Picture_00=Pompe-belier-hydrolique_t_l_chargement.jpg
 
|Step_Picture_00=Pompe-belier-hydrolique_t_l_chargement.jpg
 
|Step_Picture_01=Pompe-belier-hydrolique_image41.jpg
 
|Step_Picture_01=Pompe-belier-hydrolique_image41.jpg
Line 288: Line 282:
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Assemblage
+
|Step_Title=Assembly
|Step_Content=Avant d'assembler le système, il recouvrir les filetages de téflon  ou de tout autre moyen permettant d'assurer l'étanchéité.
+
|Step_Content=Before assembling the system, cover the threads in teflon or any other way of ensuring its sealing.
  
Voici une [https://www.youtube.com/watch?v=EtYyMO6be0w vidéo explicative] pour la pose du téflon.
+
[https://www.youtube.com/watch?v=EtYyMO6be0w This video] explains the teflon coating.
  
Il suffit ensuite d'assembler le bélier selon le schéma ci-contre.
+
Then assembly the pump according to this scheme.
  
{{Warning|Il est important de bien étanchéifier le bélier car la moindre fuite aurait des répercussions importantes sur le rendement final!}}<br />
+
{{Warning|It is really important to seal the pump properly because any leak would cause important damages to the final performance!}}<br />
 
|Step_Picture_00=Pompe-belier-hydrolique_ghu.jpg
 
|Step_Picture_00=Pompe-belier-hydrolique_ghu.jpg
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
 
|Step_Title=Support
 
|Step_Title=Support
|Step_Content=Pour choisir un support il faut prendre en compte la taille du dispositif et en particulier de la cloche à air car c'est elle qui risque de faire basculer l'ensemble. Le socle peut être en bois ou en métal mais pour des bélier sensés résister dans le temps l'idéal est de couler une dalle de béton pour fixer l'ensemble.
+
|Step_Content=To choose a support, you should take into account the system size, in particular the air chamber size, because it may unbalance the whole. The base can be made of wood or metal but for pumps that will be used for a long time, the ideal is to lay a concrete slab.
  
Découper les fers plats en fonction des longueurs désirées.
+
Cut irons depending on the required length.
  
Fabriquer 2 ou 3 pièces en arc avec la méthode des clous (en traçant l'arc au diamètre du raccord choisi pour la fixation).
+
Build 2 or 3 pieces in an arc shape using the nails method (the arc diameter should be of the fittings size).
  
Percer les pièces en arc et le socle aux bons endroits afin d'obtenir un serrage conséquent mais pas démesuré (pour ne pas abîmer les conduites).
+
Pierce the arc pieces and the base at the good spots in order to obtain a good clamping but not excessive (it would damage the pipes).
  
Fixer les pièces en arc au socle avec le bélier grâce à des tige filetées et des écrous papillon.
+
Fix the the pump on the base with the arc pieces using threaded rods and wing nuts.
  
{{Idea|Pour empêcher la cloche à air d'osciller et d'abîmer le système i lest possible de rajouter un tuteur fixé au socle ou planté dans le sol.}}<br />
+
{{Idea|To prevent this air chamber from oscillating, which would damage the system, it is possible to add a stent attached to the base or planted in the ground.}}<br />
 
|Step_Picture_00=Pompe-belier-hydrolique_support.png
 
|Step_Picture_00=Pompe-belier-hydrolique_support.png
 
}}
 
}}
 
{{Tuto Step
 
{{Tuto Step
|Step_Title=Mise en fonctionnement
+
|Step_Title=Activation
|Step_Content=Tout d'abord, placer le bélier dans un endroit plat et régulier, s'aider d'un niveau si nécessaire. Installer en suite la conduite de chute ainsi que celle de refoulement et effectuer les branchements (sans oublier le téflon).  
+
|Step_Content=Firstly, place the ram pump in a flat and even spot, using a bubble level if necessary. Install then the driving pipe and the delivery pipe and plug them (don't forget the teflon for sealing).
  
Initialement, le bélier est vide d'eau et toutes les vannes sont fermées. On commence par ouvrir un peu la vanne de refoulement vers la citerne, puis en totalité celle d'arrivée d'eau. Normalement l'eau va pousser sur le clapet de choc et le mettre en marche.  
+
At the beggining the pump is empty from water and all valves are closed. Open a little the delivery tap (leading to the tank) and then open fully the water inlet valve (coming from the drive pipe). Water will then push the primary valve and activate the system.
  
S'il n'est pas encore en mouvement, il est utile de l'actionner plusieurs fois à la main afin d'avoir suffisamment de contre-pression dans la conduite de refoulement pour lancer le système. Il est possible que ça ne marche pas si le poids des rondelles est trop grand ou si le réglage de la course du clapet n'est pas adapté, c'est pourquoi ce modèle vous permet de faire ces réglages en changeant la position du premier écrou et le nombre de rondelles. Le réglage impactera aussi sur la quantité d'eau remontée par rapport à celle perdue.
+
If doesn't work properly, you may activate it manually several times in order to have enough conter pressure in the delivery pipe. If the washers are to heavy, or if the valves' trajectory is not adapted, if may still not work properly. This model allows you to make adjustements by moving the first nut and the number of washers. This settings will also impact the quantity of water in the delivery pipe, compared to the waste water.
  
{{Pin|Plus le nombre de rondelle est élevé, plus le coup sera fort mais plus la fréquence sera faible. Il s'agit donc de trouver un équilibre entre fréquence et force du coup de bélier.}}
+
{{Pin|The more washers there is, the strongest the water hammer will be, but the frequency will be lower. It is necessary to find the balance between the frequency and the strength of the water hammer.}}
  
 +
You will have to drain regularly the pump. Indeed, there must always be air under pressure in the chamber (pressure is given bu the water push). This air will empty progressively. To fix this, you will have to close both taps (drive and delivery taps), open the drain tap and reactivate the system as shown before.
  
Vous devrez vidanger régulièrement le bélier. En effet, le principe de fonctionnement implique qu'il doit y avoir toujours de l'air sous pression, poussée par l'eau, dans la cloche, or cet air se videra au fur et à mesure. Il faudra donc couper la vanne d'arrivée et de refoulement, ouvrir celle de vidange et réamorcer comme initialement.
+
[https://www.youtube.com/watch?v=NoQrU15cRFc See this video for explanations]
 +
|Step_Picture_00=Pompe-belier-hydrolique_IMG_4663.JPG
 +
}}
 +
{{Tuto Step
 +
|Step_Title=Donnez-nous votre avis
 +
|Step_Content='''Vous avez une minute ? Que vous souhaitiez ou non réaliser cette low-tech, votre réponse à [https://framaforms.org/votre-avis-sur-ce-tutoriel-du-low-tech-lab-1589450161 ce formulaire] nous aiderait à améliorer nos tutos. Merci d'avance pour votre aide !'''
  
[https://www.youtube.com/watch?v=NoQrU15cRFc Vidéo ici]
+
Comme tout le travail du Low-tech Lab, '''ce tutoriel est participatif''', n'hésitez pas à ajouter les modifications qui vous semblent importantes, et à partager vos réalisations en commentaires.
|Step_Picture_00=Pompe-belier-hydrolique_IMG_4663.JPG
 
 
}}
 
}}
 
{{Notes
 
{{Notes
 
|Notes=*[https://www.permatheque.fr/2015/03/03/pompe-belier-hydrolique/ Permatheque]
 
|Notes=*[https://www.permatheque.fr/2015/03/03/pompe-belier-hydrolique/ Permatheque]
*[https://www.permatheque.fr/PDF/Realisation%20d'un%20Belier%20Hydrolique.pdf PDF] sur la remontée d'eau, les conduites, les débits...
+
*[https://www.permatheque.fr/PDF/Realisation%20d'un%20Belier%20Hydrolique.pdf PDF] On water upwelling, leaks ...
 
*http://www.belier-inox.fr/fabriquez-votre-belier-p867652
 
*http://www.belier-inox.fr/fabriquez-votre-belier-p867652
 
*http://www.pearltrees.com/apfeltheo/construction/id12619255#item125024933
 
*http://www.pearltrees.com/apfeltheo/construction/id12619255#item125024933
Line 338: Line 337:
 
*https://sites.google.com/site/fabricationdunepompeabelier/
 
*https://sites.google.com/site/fabricationdunepompeabelier/
 
*https://www.humanosphere.info/2014/07/comment-construire-une-pompe-a-eau-qui-fonctionne-sans-electricite/
 
*https://www.humanosphere.info/2014/07/comment-construire-une-pompe-a-eau-qui-fonctionne-sans-electricite/
 +
}}
 +
{{PageLang
 
}}
 
}}
 
{{Tuto Status
 
{{Tuto Status

Latest revision as of 15:50, 26 May 2020

Tutorial de avatarLow-tech Lab | Categories : Water

The purpose of this tutorial is to facilitate the understanding, design, manufacture and installation of a water elevation system called "Ram pump". This technology was documented during a stopover of the Sea Nomad in the Philippines, on the island of Negros. The NGO "Alternative Indigenous Development Foundation (AIFDI)", based in the city of Bacolod since 1991, helps more than 160 rural communities meet their water needs by installing hydraulic rams throughout the archipelago. The ram pump presented in this tutorial is a different version from the one used by the AIFDI because it is more accessible.

License : Attribution (CC BY)

Introduction

This tutorial was initiated by http://lowtechlab.org/wiki/Utilisateur:Basile_Sans%C3%A9au

The hydraulic ram system was invented in 1797 by Joseph-Michel Montgolfier, the man who built the first hot air balloon in 1782 with his brother, Jacques-Étienne. He was immediately criticized by his contemporaries who associated him with the theories of perpetual movement, which were considered heresies at the time.

It was not until 1857 that a patent was filed by Ernest Sylvain Bollée, which improved and made Montgolfier's invention a reality.

Since then, it has been widely used in the French and European countryside, and is now established in America and Africa in regions where fuel supplies are difficult or expensive.

A quoi sert un bélier hydraulique?

The hydraulic ram pump is a water elevation system whose operation depends solely on the driving force of the water, without any other external intervention. In concrete terms, this makes possible to pump water from a source (river, lake, stream) and use it higher to irrigate crops, water livestock or for any other domestic use.

The ram pump has several advantages:

  • It is relatively inexpensive
  • It operates fully automatically, without electricity, over a long period of time, some rams have been operating for several decades
  • It requires no lubrication, no maintenance other than cleanliness care
  • Repairs are infrequent, only necessary due to the inevitable wear and tear of moving parts
  • It can be adapted to almost any size to suit the desired flow rates and heights

Video overview

Materials

Do not use plastic material for the ram, whether valves or flaps, as they will wear out very quickly during operation..

This is an example for the case of a ram pump dimensioned in 26/34mm, but it has to be adapted according to the results of the dimensioning (Step 2

To buy:

-vanne of 26/34mm

-1 elbow of 26/34

-3 male plumbing nipples in 26/34

-1 Tee of 26/34

-1 strainer in 26/34 or a plastic check valve inside (see step 5)

-1 check valve in 26/34 with stainless steel/brass interior

-2 valves in 20/27 or 1 valve with drain valve

-1 cross of 20/27

-1 reduction from 26/34 to 20/27

-1 or 2 teflon rollers for sealing the entire assembly

-Thread lock for fixing the threaded rod

-4 rods with wing nuts

- a dozen washers with an internal diameter of 6mm

-2 nuts for M5 threaded rod

To be recovered:

-1 extinguisher of 7 or 9 litres

-1 inner tube or other rubber to make a seal

- Nails

- 1 wooden board

-flat iron 20 or 30 mm wide, about 60 cm

-a torch (according to step 5)

Tools

- a plier

- a claw to open the strainer

- Scissors

- Hammer

- -a drill bit (here 6, 7mm)

- a tap ( here M5)

Step 1 - How does a ram pump work?

  1. When priming, water flowing into the inlet line flows into the weir through the primary valve.
  2. The acceleration of the water causes the primary valve to close suddenly.
  3. The water column is suddenly braked and generates an overpressure in the pump casing (water hammer), which opens the internal valve.
  4. Under the effect of this overpressure, water flows into the balloon (and the discharge duct), compressing the air volume until the pressures are balanced.
  5. The pressure reversal closes the internal valve.
  6. The water trapped under pressure in the balloon empties into the discharge line until the pressures are balanced (determined by the height of the pipe).
  7. The closing of the internal valve has caused the pressure to drop, so the primary valve opens again. A new cycle begins....

Without accident, this process is perpetually renewed as long as it is supplied with water.

Video explanations


Step 2 - Evaluate a site and size the ram pump

First of all, it is necessary to find surface water that continuously flows on a sufficiently steep slope (about 10% minimum). If it's a dam or lake, make sure that there are positions below.

To evaluate a site, 4 parameters have to be estimated (as shown on the scheme) :

  • q water flow
  • H lift height
  • L driving line lenght
  • h fall height

Concerning the water flow, it it not necessary to be really precise, an average value would be enough to size the system. Several techniques are available, depending on your material and time : see Water flow estimation"

The water flow can vary a lot depending on the seasons, so it could be relevant to establish a maximal and minimum flow throughout the year.

The lift height corresponds to the height difference between the pump height and the water reservoir. Concretely you should decide where you want the water to arrive, and measure the height difference between this point and the water source (in average). This measure will be precised later in the process. Slope measuring can be done with this website https://www.geoportail.gouv.fr/carte : Place GPS coordinates on the map, and use the function "asymetric profile". This correspond to a curve showing the elevation depending on the distance (in m).

The driving line lenght and the fall height are directly related to the river or lake slope. In this case as well, it would be interesting to establish an asymetric profile in order to take distances and elevation gradients into account.

Once the parameters of the site are identified, we will size the pump in order to retrieve the needed flow and a minimal installation coast (the smaller the pump is, the cheaper it will be).

Determine L, H and h:

General Formula: q=((h*Q)/(h + H))0.70

Where 0.70 is the pump efficiency and Q the arrival flow.

Concretely, you will need:

  • H/10<h<H/2
  • 3H <L<15H

You can also use a fall diagram as shown on the picture to determine H and h.

Sizing of the pump:

To size the pump itself, you have to chose the needed arrival flow. One of the easiest ways to do that is to use the provided table, that gives the final pipe size according to the source flow, the elevation ratio h/H and the final flow.

Using the table, you can proceed as follows:

- Choose the final flow, corresponding to you water needs

- Find the corresponding number in the table according to the elevation ratios of your site

- Do not hesitate to oversize the system in case of doubt

- Verify that you water flow is higher than indicated in the table

- On the same table line, you can read the relevant pump sizing for you situation

You obtain the battery pipe (or driving line) diameter D, which is the same for all other components of the pump.

For example: 26x34 to an internal diamter of 26mm and an external diameter of 34mm
Be careful because the dimensions given are in milimeters but can sometimes be indicated in inches.

Millimeters (mm) Inches
15x21 1/2
20x27 3/4
26x34 1
33x42 1 1/4
40x49 1 1/2
50x60 2

All pump components will therefore be of the same dimension, except for the outlet pipe (or delivery pipe) whose diameter D' will be half of the driving line D. D'=D/2


Step 3 - Choose your type of installation

When building a ram pump, 2 different configurations exist that will play a role on the pump efficiency. They concern positions of the primary valve, the internal valve and the air chamber.

Repartition assembly (image 1):

In this case, the primary valve is before the air chamber. This position can make the pump look rather flat, as shown in the first picture of this page. Some sources state that this system can reach 20% higher performance than the other, but we have not been able to prove it yet.

In butting assembly (image 2):

We will describe this system in the tutorial, as it is more widely used. The pump will look more vertical.

It is difficult to choose between the two systems, because many different opinions can be found on this subject.


Step 4 - Air chamber

To disassemble the extinguisher, you should unscrew the mouthpiece with a wrench and take out the CO2 cartridge it contains.

Then, take out the plastic pipe and the lance.

The outer part is normalised 20x27 and will be screwed to the pump.

To obtain a functional air chamber, you should also empty it from the powder and clean the inside of the extinguisher.

The lance hole should be stuck with something that resists pressure ! If you don' find a lid, you can weld a round metallic part on it.

-

If you don't have an extinguisher, it is possible to build an air chamber with a tube stuck at both ends and a PVC fitting. The linkage between the fitting and a standard pipe end is done thanks to a threaded reduction, more difficul to find on the market (see photo)


Step 5 - Primary valve (or impact valve)

We remind you that this tutorial is an example for a 26/34 sizing, and needs to be adapted to you particular situation.

First technique using a strainer (image 1):

This version is the sturdiest, but will be a bit harder to build

Firstly, disassemble the strainer using a claw clamp.

One the valve is recovered, drill a hole is the center with a 4mm drill. You might ask a turner in his workshop.

Tap at 5mm.

Drill a 6 or 7 mm hole at the top center of the strainer.

Insert the rod in the 5mm hole, with a bit of thread lock.

[1]Watching this video will help you to understand the strain disassembly : https://www.youtube.com/watch?v=HZNX5r4G-cs

Second technique using a non-return valve(image 3):

This technique is less sturdy but more accessible because this kind of valve in plastic can be found in most shops.

To open the anti-return valve:

-place male fittings on each side on the valve to avoid damaging it during the operation

-Distinguish a very thin line that separates two parts of the valve

-Heat at the level of this line using a blowtorch, in order to melt the glue on the inside (be careful not to heat to much).

-Unscrew the valve (using a claw clamp and a vice for example)

Then, remove the plastic flap inside and replace it by a washer, nuts and a threaded rod. (as shown on the 4th image).


For both techniques, it is really important to put the threaded rod at the center of the system, otherwise it would get stuck and block the whole system.

Step 6 - Assembly

Before assembling the system, cover the threads in teflon or any other way of ensuring its sealing.

This video explains the teflon coating.

Then assembly the pump according to this scheme.

It is really important to seal the pump properly because any leak would cause important damages to the final performance!



Step 7 - Support

To choose a support, you should take into account the system size, in particular the air chamber size, because it may unbalance the whole. The base can be made of wood or metal but for pumps that will be used for a long time, the ideal is to lay a concrete slab.

Cut irons depending on the required length.

Build 2 or 3 pieces in an arc shape using the nails method (the arc diameter should be of the fittings size).

Pierce the arc pieces and the base at the good spots in order to obtain a good clamping but not excessive (it would damage the pipes).

Fix the the pump on the base with the arc pieces using threaded rods and wing nuts.

To prevent this air chamber from oscillating, which would damage the system, it is possible to add a stent attached to the base or planted in the ground.



Step 8 - Activation

Firstly, place the ram pump in a flat and even spot, using a bubble level if necessary. Install then the driving pipe and the delivery pipe and plug them (don't forget the teflon for sealing).

At the beggining the pump is empty from water and all valves are closed. Open a little the delivery tap (leading to the tank) and then open fully the water inlet valve (coming from the drive pipe). Water will then push the primary valve and activate the system.

If doesn't work properly, you may activate it manually several times in order to have enough conter pressure in the delivery pipe. If the washers are to heavy, or if the valves' trajectory is not adapted, if may still not work properly. This model allows you to make adjustements by moving the first nut and the number of washers. This settings will also impact the quantity of water in the delivery pipe, compared to the waste water.

The more washers there is, the strongest the water hammer will be, but the frequency will be lower. It is necessary to find the balance between the frequency and the strength of the water hammer.

You will have to drain regularly the pump. Indeed, there must always be air under pressure in the chamber (pressure is given bu the water push). This air will empty progressively. To fix this, you will have to close both taps (drive and delivery taps), open the drain tap and reactivate the system as shown before.

See this video for explanations



Step 9 - Donnez-nous votre avis

Vous avez une minute ? Que vous souhaitiez ou non réaliser cette low-tech, votre réponse à ce formulaire nous aiderait à améliorer nos tutos. Merci d'avance pour votre aide !

Comme tout le travail du Low-tech Lab, ce tutoriel est participatif, n'hésitez pas à ajouter les modifications qui vous semblent importantes, et à partager vos réalisations en commentaires.

Notes and references

Comments

Published